Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR AI ; 2: e44779, 2023 May 22.
Article in English | MEDLINE | ID: mdl-38875572

ABSTRACT

BACKGROUND: The identification of objective pain biomarkers can contribute to an improved understanding of pain, as well as its prognosis and better management. Hence, it has the potential to improve the quality of life of patients with cancer. Artificial intelligence can aid in the extraction of objective pain biomarkers for patients with cancer with bone metastases (BMs). OBJECTIVE: This study aimed to develop and evaluate a scalable natural language processing (NLP)- and radiomics-based machine learning pipeline to differentiate between painless and painful BM lesions in simulation computed tomography (CT) images using imaging features (biomarkers) extracted from lesion center point-based regions of interest (ROIs). METHODS: Patients treated at our comprehensive cancer center who received palliative radiotherapy for thoracic spine BM between January 2016 and September 2019 were included in this retrospective study. Physician-reported pain scores were extracted automatically from radiation oncology consultation notes using an NLP pipeline. BM center points were manually pinpointed on CT images by radiation oncologists. Nested ROIs with various diameters were automatically delineated around these expert-identified BM center points, and radiomics features were extracted from each ROI. Synthetic Minority Oversampling Technique resampling, the Least Absolute Shrinkage And Selection Operator feature selection method, and various machine learning classifiers were evaluated using precision, recall, F1-score, and area under the receiver operating characteristic curve. RESULTS: Radiation therapy consultation notes and simulation CT images of 176 patients (mean age 66, SD 14 years; 95 males) with thoracic spine BM were included in this study. After BM center point identification, 107 radiomics features were extracted from each spherical ROI using pyradiomics. Data were divided into 70% and 30% training and hold-out test sets, respectively. In the test set, the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of our best performing model (neural network classifier on an ensemble ROI) were 0.82 (132/163), 0.59 (16/27), 0.85 (116/136), and 0.83, respectively. CONCLUSIONS: Our NLP- and radiomics-based machine learning pipeline was successful in differentiating between painful and painless BM lesions. It is intrinsically scalable by using NLP to extract pain scores from clinical notes and by requiring only center points to identify BM lesions in CT images.

2.
Sci Rep ; 12(1): 9866, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701461

ABSTRACT

Radiomics-based machine learning classifiers have shown potential for detecting bone metastases (BM) and for evaluating BM response to radiotherapy (RT). However, current radiomics models require large datasets of images with expert-segmented 3D regions of interest (ROIs). Full ROI segmentation is time consuming and oncologists often outline just RT treatment fields in clinical practice. This presents a challenge for real-world radiomics research. As such, a method that simplifies BM identification but does not compromise the power of radiomics is needed. The objective of this study was to investigate the feasibility of radiomics models for BM detection using lesion-center-based geometric ROIs. The planning-CT images of 170 patients with non-metastatic lung cancer and 189 patients with spinal BM were used. The point locations of 631 BM and 674 healthy bone (HB) regions were identified by experts. ROIs with various geometric shapes were centered and automatically delineated on the identified locations, and 107 radiomics features were extracted. Various feature selection methods and machine learning classifiers were evaluated. Our point-based radiomics pipeline was successful in differentiating BM from HB. Lesion-center-based segmentation approach greatly simplifies the process of preparing images for use in radiomics studies and avoids the bottleneck of full ROI segmentation.


Subject(s)
Machine Learning , Neoplasms , Humans , Retrospective Studies
3.
J Biomed Inform ; 120: 103864, 2021 08.
Article in English | MEDLINE | ID: mdl-34265451

ABSTRACT

OBJECTIVE: The majority of cancer patients suffer from severe pain at the advanced stage of their illness. In most cases, cancer pain is underestimated by clinical staff and is not properly managed until it reaches a critical stage. Therefore, detecting and addressing cancer pain early can potentially improve the quality of life of cancer patients. The objective of this research project was to develop a generalizable Natural Language Processing (NLP) pipeline to find and classify physician-reported pain in the radiation oncology consultation notes of cancer patients with bone metastases. MATERIALS AND METHODS: The texts of 1249 publicly-available hospital discharge notes in the i2b2 database were used as a training and validation set. The MetaMap and NegEx algorithms were implemented for medical terms extraction. Sets of NLP rules were developed to score pain terms in each note. By averaging pain scores, each note was assigned to one of the three verbally-declared pain (VDP) labels, including no pain, pain, and no mention of pain. Without further training, the generalizability of our pipeline in scoring individual pain terms was tested independently using 30 hospital discharge notes from the MIMIC-III database and 30 consultation notes of cancer patients with bone metastasis from our institution's radiation oncology electronic health record. Finally, 150 notes from our institution were used to assess the pipeline's performance at assigning VDP. RESULTS: Our NLP pipeline successfully detected and quantified pain in the i2b2 summary notes with 93% overall precision and 92% overall recall. Testing on the MIMIC-III database achieved precision and recall of 91% and 86% respectively. The pipeline successfully detected pain with 89% precision and 82% recall on our institutional radiation oncology corpus. Finally, our pipeline assigned a VDP to each note in our institutional corpus with 84% and 82% precision and recall, respectively. CONCLUSION: Our NLP pipeline enables the detection and classification of physician-reported pain in our radiation oncology corpus. This portable and ready-to-use pipeline can be used to automatically extract and classify physician-reported pain from clinical notes where the pain is not otherwise documented through structured data entry.


Subject(s)
Bone Neoplasms , Physicians , Electronic Health Records , Humans , Natural Language Processing , Pain/diagnosis , Quality of Life
4.
Int J Prev Med ; 11: 183, 2020.
Article in English | MEDLINE | ID: mdl-33456739

ABSTRACT

BACKGROUND: The hot line services were developed in response to the perceived need for 24-hour help services in crises ranging from suicide to unwanted pregnancy. This study is aimed at analyzing the strengths, weaknesses, challenges, and suggestions of improving the performance of the help centers from the perspective of key stakeholders. METHODS: We conducted a qualitative study to elicit the key informants' opinion regarding the performance of Iranian hot-lines. All the conversations were audio-recorded with the permission of the participants. To reach the saturation limit, the number of interviews was completed in the saturation of data. Data was gathered from 15 individual in-depth interviews. Collecting and analyses of data was based on content analysis through which simultaneously during texts open coding, main concepts were extracted and then in axial coding similar concepts were categorized. RESULTS: According to the study results, there is no specific and independent system for assessing the hot- lines. One of the major weaknesses was the lack of standard protocols. Most participants believed that most of these guidelines came from the general principles of counseling and are not standard. As another point, the existence of referral services is one of the main problems of counseling lines. The most important suggestion from the majority of experts were the development of services and modification of their investments. CONCLUSIONS: The findings, in addition to providing the applied data for policy-making in the health system, will significantly contribute to the creation of scientific, technical, and skillful personnel in the community of researchers.

SELECTION OF CITATIONS
SEARCH DETAIL
...