Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IET Nanobiotechnol ; 17(4): 302-311, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37139612

ABSTRACT

About 50% of cancer patients receive radiation therapy. Despite the therapeutic benefits of this method, the toxicity of radiation in the normal tissues is unavoidable To improve the quality of radiation therapy, in addition to other methods such as IMRT, IGRT, and high radiation dose, nanoparticles have shown excellent potential when ionising radiation is applied to the target volume. Recently, bismuth-based nanoparticles (BiNPs) have become particularly popular in radiation therapy due to their high atomic numbers (Z), high X-ray attenuation coefficient, low toxicity, and low cost. Moreover, it is easy to synthesise in a variety of sizes and shapes. This study aimed to review the effects of the bismuth-based NP and its combination with other compounds, and their potential synergies in radiotherapy, discussed based on their physical, chemical, and biological interactions. Targeted and non-targeted bismuth-based NPs used in radiotherapy as radiosensitizers and dose enhancement effects are described. The results reported in the literature were categorised into various groups. Also, this review has highlighted the importance of bismuth-based NPs in different forms of cancer treatment to find the highest efficiency for applying them as a suitable candidate for various cancer therapy and future clinical applications.


Subject(s)
Nanoparticles , Neoplasms , Radiation-Sensitizing Agents , Humans , Bismuth/chemistry , Nanoparticles/chemistry , Radiation-Sensitizing Agents/chemistry , Neoplasms/radiotherapy , Neoplasms/drug therapy
2.
Lasers Med Sci ; 32(9): 1971-1979, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28801854

ABSTRACT

Folliculogenesis is a cycle that produces the majority of oocyte. Any disruption to this cycle leads to ovulation diseases, like polycystic ovarian syndrome (PCOS). Treatments include drugs and surgery; lasers have also been used complementarily. Meanwhile, still there is no definite treatment for PCOS. This study investigated the photo-bio stimulation effect of near-infrared and red low-level laser on producing follicles and compared the result with result of using common drug, clomiphene. Therefore, the aim of this study was to propose the use of lasers autonomously treatment. So, there was one question: how do lasers affect folliculogenesis cycle in rat's ovary tissue? In this study, 28 rats were assigned to four groups as follows: control (CT), clomiphene drug (D), red laser (RL), and near-infrared laser (NIRL). Afterwards, 14 rats of RL and NIRL groups received laser on the first 2 days of estrous cycle, each 6 days, for 48 days. During treatment period, each rat received energy density of 5 J/cm2. Seven rats in D group received clomiphene. After the experiment, lasers' effects at two wavelengths of 630 and 810 nm groups have been investigated and compared with clomiphene and CT groups. Producing different follicles to complement folliculogenesis cycle increased in NIRL and RL groups, but this increase was significant only in the NIRL group. This indicates that NIRL increases ovarian activity to produce oocyte that certainly can be used in future studies for finding a cure to ovarian negligence to produce more oocyte and treat diseases caused by it like PCOS.


Subject(s)
Clomiphene/pharmacology , Infrared Rays , Low-Level Light Therapy , Ovarian Follicle/drug effects , Ovarian Follicle/radiation effects , Animals , Female , Fertility Agents, Female/pharmacology , Hormones/pharmacology , Ovarian Follicle/pathology , Ovarian Follicle/physiology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...