Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(49): 17718-17723, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31571374

ABSTRACT

Understanding the pH dependent shift of the oxidation peak of the underpotential deposited hydrogen (Hupd ) in cyclic voltammograms on the Pt surface is of significance in terms of both the fundamentals of electrochemistry and the rational design of catalysts for the hydrogen oxidation/evolution reactions (HOR/HER). In this work, we provide compelling evidence that the pH dependent shift in the Hupd peak on Pt surfaces is driven by the structure of interfacial water rather than the specific adsorption of cations on the electrode surface. Combined cyclic voltammetric and surface enhanced spectroscopic investigations using an organic cation and crown-ether chelated alkali metal cations show that specific adsorption of metal and organic cations on the Pt surface at the conditions relevant to the HOR/HER is unlikely. The vibrational band corresponding to strongly bound water is monitored when the electrode potential is varied in the Hupd range in both acid and base.

2.
Angew Chem Int Ed Engl ; 58(39): 13768-13772, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31283868

ABSTRACT

Despite recent intense interest in the development of catalysts for the electrochemical nitrogen reduction reaction (ENRR), mechanistic understanding and catalyst design principles remain lacking. In this work, we develop a strategy to determine the density of initial and steady-state active sites on ENRR catalysts that follow the Mars-van Krevelen mechanism via quantitative isotope-exchange experiments. This method allows the comparison of intrinsic activities of active sites and facilitates the identification and improvement of active-site structures for ENRR. Combined with detailed density functional theory calculations, we show that the rate-limiting step in the ENRR is likely the initial N≡N bond activation via the addition of a proton and an electron to the adsorbed N2 on the N vacancies to form N2 H. The methodology developed and mechanistic insights gained in this work could guide the rational catalyst design in the ENRR.

3.
J Am Chem Soc ; 140(41): 13387-13391, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30244579

ABSTRACT

Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10-10 mol s-1 cm-2 and 6.0% at -0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars-van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10-10 mol s-1 cm-2 can be maintained for 116 h, with a steady-state turnover number of 431.

SELECTION OF CITATIONS
SEARCH DETAIL
...