Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 154(4): 2676-2688, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37877776

ABSTRACT

An ocean acoustic tomography array with a radius of 150 km was deployed in the central Beaufort Gyre during 2016-2017 for the Canada Basin Acoustic Propagation Experiment. Five 250-Hz transceivers were deployed in a pentagon, with a sixth transceiver at the center. A long vertical receiving array was located northwest of the central mooring. Travel-time anomalies for refracted-surface-reflected acoustic ray paths were calculated relative to travel times computed for a range-dependent sound-speed field from in situ temperature and salinity observations. Travel-time inversions for the three-dimensional sound-speed field consistent with the uncertainties in travel time [∼2 ms root mean square (rms)], receiver and source positions (∼ 3 m rms), and sound speed calculated from conductivity-temperature-depth casts could not be obtained without introducing a deep sound-speed bias (below 1000 m). Because of the precise nature of the travel-time observations with low mesoscale and internal wave variability, the conclusion is that the internationally accepted sound-speed equation (TEOS-10) gives values at high pressure (greater than 1000 m) and low temperature (less than 0 °C) that are too high by 0.14-0.16 m s-1.

2.
Nat Geosci ; 16(10): 871-876, 2023.
Article in English | MEDLINE | ID: mdl-37808555

ABSTRACT

Feedbacks between ice melt, glacier flow and ocean circulation can rapidly accelerate ice loss at tidewater glaciers and alter projections of sea-level rise. At the core of these projections is a model for ice melt that neglects the fact that glacier ice contains pressurized bubbles of air due to its formation from compressed snow. Current model estimates can underpredict glacier melt at termini outside the region influenced by the subglacial discharge plume by a factor of 10-100 compared with observations. Here we use laboratory-scale experiments and theoretical arguments to show that the bursting of pressurized bubbles from glacier ice could be a source of this discrepancy. These bubbles eject air into the seawater, delivering additional buoyancy and impulses of turbulent kinetic energy to the boundary layer, accelerating ice melt. We show that real glacier ice melts 2.25 times faster than clear bubble-free ice when driven by natural convection in a laboratory setting. We extend these results to the geophysical scale to show how bubble dynamics contribute to ice melt from tidewater glaciers. Consequently, these results could increase the accuracy of modelled predictions of ice loss to better constrain sea-level rise projections globally.

3.
Nat Commun ; 13(1): 5624, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163322

ABSTRACT

Over the Texas-Louisiana Shelf in the Northern Gulf of Mexico, the eutrophic, fresh Mississippi/Atchafalaya river plume isolates saltier waters below, supporting the formation of bottom hypoxia in summer. The plume also generates strong density fronts, features of the circulation that are known pathways for the exchange of water between the ocean surface and the deep. Using high-resolution ocean observations and numerical simulations, we demonstrate how the summer land-sea breeze generates rapid vertical exchange at the plume fronts. We show that the interaction between the land-sea breeze and the fronts leads to convergence/divergence in the surface mixed layer, which further facilitates a slantwise circulation that subducts surface water along isopycnals into the interior and upwells bottom waters to the surface. This process causes significant vertical displacements of water parcels and creates a ventilation pathway for the bottom water in the northern Gulf. The ventilation of bottom water can bypass the stratification barrier associated with the Mississippi/Atchafalaya river plume and might impact the dynamics of the region's dead zone.


Subject(s)
Rivers , Water , Gulf of Mexico , Louisiana , Seasons
4.
Front Psychol ; 13: 1062535, 2022.
Article in English | MEDLINE | ID: mdl-36846482

ABSTRACT

This paper revisits the proposal for the classification of meditation methods which we introduced in our initial 2013 publication, "Toward a Universal Taxonomy and Definition of Meditation". At that time, we advanced the thesis that meditation methods could be effectively segregated into three orthogonal categories by integrating the taxonomic principle of functional essentialism and the paradigm of Affect and Cognition; and we presented relevant research findings which supported that assertion. This iteration expands upon those theoretical and methodological elements by articulating a more comprehensive Three Tier Classification System which accounts for the full range of meditation methods; and demonstrates how recent neuroscience research continues to validate and support our thesis. This paper also introduces a novel criterion-based protocol for formulating classification systems of meditation methods, and demonstrates how this model can be used to compare and evaluate various other taxonomy proposals that have been published over the past 15 years.

5.
Front Psychol ; 10: 2206, 2019.
Article in English | MEDLINE | ID: mdl-31636579

ABSTRACT

[This corrects the article DOI: 10.3389/fpsyg.2013.00806.].

6.
Bull Am Meteorol Soc ; 98(11): 2429-2454, 2017 Nov.
Article in English | MEDLINE | ID: mdl-30270923

ABSTRACT

Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF- and NOAA-supported Climate Process Team has been engaged in developing, implementing and testing dynamics-based parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions.

7.
Ann Rev Mar Sci ; 8: 95-123, 2016.
Article in English | MEDLINE | ID: mdl-26331898

ABSTRACT

We review the physics of near-inertial waves (NIWs) in the ocean and the observations, theory, and models that have provided our present knowledge. NIWs appear nearly everywhere in the ocean as a spectral peak at and just above the local inertial period f, and the longest vertical wavelengths can propagate at least hundreds of kilometers toward the equator from their source regions; shorter vertical wavelengths do not travel as far and do not contain as much energy, but lead to turbulent mixing owing to their high shear. NIWs are generated by a variety of mechanisms, including the wind, nonlinear interactions with waves of other frequencies, lee waves over bottom topography, and geostrophic adjustment; the partition among these is not known, although the wind is likely the most important. NIWs likely interact strongly with mesoscale and submesoscale motions, in ways that are just beginning to be understood.


Subject(s)
Gravitation , Seawater/chemistry , Water Movements , Wind
9.
Nature ; 521(7550): 65-9, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25951285

ABSTRACT

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

10.
Front Psychol ; 4: 806, 2013.
Article in English | MEDLINE | ID: mdl-24312060

ABSTRACT

One of the well-documented concerns confronting scholarly discourse about meditation is the plethora of semantic constructs and the lack of a unified definition and taxonomy. In recent years there have been several notable attempts to formulate new lexicons in order to define and categorize meditation methods. While these constructs have been useful and have encountered varying degrees of acceptance, they have also been subject to misinterpretation and debate, leaving the field devoid of a consensual paradigm. This paper attempts to influence this ongoing discussion by proposing two new models which hold the potential for enhanced scientific reliability and acceptance. Regarding the quest for a universally acceptable taxonomy, we suggest a paradigm shift away from the norm of fabricatIng new terminology from a first-person perspective. As an alternative, we propose a new taxonomic system based on the historically well-established and commonly accepted third-person paradigm of Affect and Cognition, borrowed, in part, from the psychological and cognitive sciences. With regard to the elusive definitional problem, we propose a model of meditation which clearly distinguishes "method" from "state" and is conceptualized as a dynamic process which is inclusive of six related but distinct stages. The overall goal is to provide researchers with a reliable nomenclature with which to categorize and classify diverse meditation methods, and a conceptual framework which can provide direction for their research and a theoretical basis for their findings.

11.
Nature ; 500(7460): 64-7, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23883934

ABSTRACT

Sea surface temperature (SST) is a critical control on the atmosphere, and numerical models of atmosphere-ocean circulation emphasize its accurate prediction. Yet many models demonstrate large, systematic biases in simulated SST in the equatorial 'cold tongues' (expansive regions of net heat uptake from the atmosphere) of the Atlantic and Pacific oceans, particularly with regard to a central but little-understood feature of tropical oceans: a strong seasonal cycle. The biases may be related to the inability of models to constrain turbulent mixing realistically, given that turbulent mixing, combined with seasonal variations in atmospheric heating, determines SST. In temperate oceans, the seasonal SST cycle is clearly related to varying solar heating; in the tropics, however, SSTs vary seasonally in the absence of similar variations in solar inputs. Turbulent mixing has long been a likely explanation, but firm, long-term observational evidence has been absent. Here we show the existence of a distinctive seasonal cycle of subsurface cooling via mixing in the equatorial Pacific cold tongue, using multi-year measurements of turbulence in the ocean. In boreal spring, SST rises by 2 kelvin when heating of the upper ocean by the atmosphere exceeds cooling by mixing from below. In boreal summer, SST decreases because cooling from below exceeds heating from above. When the effects of lateral advection are considered, the magnitude of summer cooling via mixing (4 kelvin per month) is equivalent to that required to counter the heating terms. These results provide quantitative assessment of how mixing varies on timescales longer than a few weeks, clearly showing its controlling influence on seasonal cooling of SST in a critical oceanic regime.


Subject(s)
Cold Temperature , Seasons , Seawater , Water Movements , Atmosphere , El Nino-Southern Oscillation , Models, Theoretical , Pacific Ocean , Seawater/analysis
12.
Nature ; 437(7057): 400-3, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16163354

ABSTRACT

Satellite images have long revealed the surface expression of large amplitude internal waves that propagate along density interfaces beneath the sea surface. Internal waves are typically the most energetic high-frequency events in the coastal ocean, displacing water parcels by up to 100 m and generating strong currents and turbulence that mix nutrients into near-surface waters for biological utilization. While internal waves are known to be generated by tidal currents over ocean-bottom topography, they have also been observed frequently in the absence of any apparent tide-topography interactions. Here we present repeated measurements of velocity, density and acoustic backscatter across the Columbia River plume front. These show how internal waves can be generated from a river plume that flows as a gravity current into the coastal ocean. We find that the convergence of horizontal velocities at the plume front causes frontal growth and subsequent displacement downward of near-surface waters. Individual freely propagating waves are released from the river plume front when the front's propagation speed decreases below the wave speed in the water ahead of it. This mechanism generates internal waves of similar amplitude and steepness as internal waves from tide-topography interactions observed elsewhere, and is therefore important to the understanding of coastal ocean mixing.

13.
Science ; 301(5631): 355-7, 2003 Jul 18.
Article in English | MEDLINE | ID: mdl-12869758

ABSTRACT

The cascade from tides to turbulence has been hypothesized to serve as a major energy pathway for ocean mixing. We investigated this cascade along the Hawaiian Ridge using observations and numerical models. A divergence of internal tidal energy flux observed at the ridge agrees with the predictions of internal tide models. Large internal tidal waves with peak-to-peak amplitudes of up to 300 meters occur on the ridge. Internal-wave energy is enhanced, and turbulent dissipation in the region near the ridge is 10 times larger than open-ocean values. Given these major elements in the tides-to-turbulence cascade, an energy budget approaches closure.

SELECTION OF CITATIONS
SEARCH DETAIL
...