Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Genetics ; 224(1)2023 05 04.
Article in English | MEDLINE | ID: mdl-36607068

ABSTRACT

As one of the first model organism knowledgebases, Saccharomyces Genome Database (SGD) has been supporting the scientific research community since 1993. As technologies and research evolve, so does SGD: from updates in software architecture, to curation of novel data types, to incorporation of data from, and collaboration with, other knowledgebases. We are continuing to make steps toward providing the community with an S. cerevisiae pan-genome. Here, we describe software upgrades, a new nomenclature system for genes not found in the reference strain, and additions to gene pages. With these improvements, we aim to remain a leading resource for students, researchers, and the broader scientific community.


Subject(s)
Saccharomyces , Humans , Saccharomyces/genetics , Saccharomyces cerevisiae/genetics , Genome, Fungal , Databases, Genetic , Software
2.
Genetics ; 220(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-34897464

ABSTRACT

Saccharomyces cerevisiae is used to provide fundamental understanding of eukaryotic genetics, gene product function, and cellular biological processes. Saccharomyces Genome Database (SGD) has been supporting the yeast research community since 1993, serving as its de facto hub. Over the years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation, and developed various tools and methods for analysis and curation of a variety of emerging data types. More recently, SGD and six other model organism focused knowledgebases have come together to create the Alliance of Genome Resources to develop sustainable genome information resources that promote and support the use of various model organisms to understand the genetic and genomic bases of human biology and disease. Here we describe recent activities at SGD, including the latest reference genome annotation update, the development of a curation system for mutant alleles, and new pages addressing homology across model organisms as well as the use of yeast to study human disease.


Subject(s)
Saccharomyces , Alleles , Databases, Genetic , Genome, Fungal , Humans , Saccharomyces/genetics , Saccharomyces cerevisiae/genetics
3.
Database (Oxford) ; 20202020 01 01.
Article in English | MEDLINE | ID: mdl-32559296

ABSTRACT

Short paragraphs that describe gene function, referred to as gene summaries, are valued by users of biological knowledgebases for the ease with which they convey key aspects of gene function. Manual curation of gene summaries, while desirable, is difficult for knowledgebases to sustain. We developed an algorithm that uses curated, structured gene data at the Alliance of Genome Resources (Alliance; www.alliancegenome.org) to automatically generate gene summaries that simulate natural language. The gene data used for this purpose include curated associations (annotations) to ontology terms from the Gene Ontology, Disease Ontology, model organism knowledgebase (MOK)-specific anatomy ontologies and Alliance orthology data. The method uses sentence templates for each data category included in the gene summary in order to build a natural language sentence from the list of terms associated with each gene. To improve readability of the summaries when numerous gene annotations are present, we developed a new algorithm that traverses ontology graphs in order to group terms by their common ancestors. The algorithm optimizes the coverage of the initial set of terms and limits the length of the final summary, using measures of information content of each ontology term as a criterion for inclusion in the summary. The automated gene summaries are generated with each Alliance release, ensuring that they reflect current data at the Alliance. Our method effectively leverages category-specific curation efforts of the Alliance member databases to create modular, structured and standardized gene summaries for seven member species of the Alliance. These automatically generated gene summaries make cross-species gene function comparisons tenable and increase discoverability of potential models of human disease. In addition to being displayed on Alliance gene pages, these summaries are also included on several MOK gene pages.


Subject(s)
Databases, Genetic , Genomics , Molecular Sequence Annotation/methods , Gene Ontology , Information Storage and Retrieval
4.
Database (Oxford) ; 20202020 01 01.
Article in English | MEDLINE | ID: mdl-32128557

ABSTRACT

The identification and accurate quantitation of protein abundance has been a major objective of proteomics research. Abundance studies have the potential to provide users with data that can be used to gain a deeper understanding of protein function and regulation and can also help identify cellular pathways and modules that operate under various environmental stress conditions. One of the central missions of the Saccharomyces Genome Database (SGD; https://www.yeastgenome.org) is to work with researchers to identify and incorporate datasets of interest to the wider scientific community, thereby enabling hypothesis-driven research. A large number of studies have detailed efforts to generate proteome-wide abundance data, but deeper analyses of these data have been hampered by the inability to compare results between studies. Recently, a unified protein abundance dataset was generated through the evaluation of more than 20 abundance datasets, which were normalized and converted to common measurement units, in this case molecules per cell. We have incorporated these normalized protein abundance data and associated metadata into the SGD database, as well as the SGD YeastMine data warehouse, resulting in the addition of 56 487 values for untreated cells grown in either rich or defined media and 28 335 values for cells treated with environmental stressors. Abundance data for protein-coding genes are displayed in a sortable, filterable table on Protein pages, available through Locus Summary pages. A median abundance value was incorporated, and a median absolute deviation was calculated for each protein-coding gene and incorporated into SGD. These values are displayed in the Protein section of the Locus Summary page. The inclusion of these data has enhanced the quality and quantity of protein experimental information presented at SGD and provides opportunities for researchers to access and utilize the data to further their research.


Subject(s)
Genome, Fungal/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Databases, Genetic , Genomics/methods , Internet , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , User-Computer Interface
5.
Nucleic Acids Res ; 48(D1): D743-D748, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31612944

ABSTRACT

The Saccharomyces Genome Database (SGD; www.yeastgenome.org) maintains the official annotation of all genes in the Saccharomyces cerevisiae reference genome and aims to elucidate the function of these genes and their products by integrating manually curated experimental data. Technological advances have allowed researchers to profile RNA expression and identify transcripts at high resolution. These data can be configured in web-based genome browser applications for display to the general public. Accordingly, SGD has incorporated published transcript isoform data in our instance of JBrowse, a genome visualization platform. This resource will help clarify S. cerevisiae biological processes by furthering studies of transcriptional regulation, untranslated regions, genome engineering, and expression quantification in S. cerevisiae.


Subject(s)
Genome, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcriptome , Computational Biology/methods , Databases, Genetic , Genomics , Molecular Sequence Annotation , Open Reading Frames , Protein Isoforms , RNA-Seq , Reference Values , User-Computer Interface , Web Browser
6.
Methods Mol Biol ; 1757: 21-30, 2018.
Article in English | MEDLINE | ID: mdl-29761454

ABSTRACT

The Saccharomyces Genome Database (SGD) is a well-established, key resource for researchers studying Saccharomyces cerevisiae. In addition to updating and maintaining the official genomic sequence of this highly studied organism, SGD provides integrated data regarding gene functions and phenotypes, which are extracted from the published literature. The vast amount and variety of data housed in the database can prove challenging to navigate for the first-time user. Therefore, this chapter serves as an introduction describing how to search the database in order to discover new information. We introduce the different types of pages on the website, and describe how to manipulate the tables and diagrams therein to display, download, or analyze the data using various SGD tools.


Subject(s)
Databases, Genetic , Genome, Fungal , Genomics , Saccharomyces/genetics , Computational Biology/methods , Gene Ontology , Genes, Fungal , Genomics/methods , Molecular Sequence Annotation , Phenotype , Software , Web Browser
8.
Nucleic Acids Res ; 46(D1): D736-D742, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29140510

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and to provide this wealth of information to advance, in many ways, research on other organisms, even those as evolutionarily distant as humans. To build such a bridge between biological kingdoms, SGD is curating data regarding yeast-human complementation, in which a human gene can successfully replace the function of a yeast gene, and/or vice versa. These data are manually curated from published literature, made available for download, and incorporated into a variety of analysis tools provided by SGD.


Subject(s)
Databases, Genetic , Genome, Fungal , Saccharomyces cerevisiae/genetics , Forecasting , Gene Ontology , Genes, Fungal , Genome, Human , Humans , Mutation , Species Specificity
9.
Database (Oxford) ; 2017(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-28365719

ABSTRACT

The Saccharomyces Genome Database (SGD; www.yeastgenome.org ), the primary genetics and genomics resource for the budding yeast S. cerevisiae , provides free public access to expertly curated information about the yeast genome and its gene products. As the central hub for the yeast research community, SGD engages in a variety of social outreach efforts to inform our users about new developments, promote collaboration, increase public awareness of the importance of yeast to biomedical research, and facilitate scientific discovery. Here we describe these various outreach methods, from networking at scientific conferences to the use of online media such as blog posts and webinars, and include our perspectives on the benefits provided by outreach activities for model organism databases. Database URL: http://www.yeastgenome.org.


Subject(s)
Biomedical Research/education , Databases, Genetic , Genome, Fungal , Saccharomyces cerevisiae/genetics , Blogging , Congresses as Topic
10.
Database (Oxford) ; 2017(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-28365727

ABSTRACT

Due to recent advancements in the production of experimental proteomic data, the Saccharomyces genome database (SGD; www.yeastgenome.org ) has been expanding our protein curation activities to make new data types available to our users. Because of broad interest in post-translational modifications (PTM) and their importance to protein function and regulation, we have recently started incorporating expertly curated PTM information on individual protein pages. Here we also present the inclusion of new abundance and protein half-life data obtained from high-throughput proteome studies. These new data types have been included with the aim to facilitate cellular biology research. Database URL: : www.yeastgenome.org.


Subject(s)
Databases, Protein , Genome, Fungal , Molecular Sequence Annotation , Proteome , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Proteome/genetics , Proteome/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
Article in English | MEDLINE | ID: mdl-27252399

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. To provide a wider scope of genetic and phenotypic variation in yeast, the genome sequences and their corresponding annotations from 11 alternative S. cerevisiae reference strains have been integrated into SGD. Genomic and protein sequence information for genes from these strains are now available on the Sequence and Protein tab of the corresponding Locus Summary pages. We illustrate how these genome sequences can be utilized to aid our understanding of strain-specific functional and phenotypic differences.Database URL: www.yeastgenome.org.


Subject(s)
Databases, Genetic , Genome, Fungal/genetics , Genomics/methods , Saccharomyces/genetics , Molecular Sequence Annotation , Reproducibility of Results , Saccharomyces cerevisiae/genetics , User-Computer Interface
12.
Nucleic Acids Res ; 44(D1): D698-702, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26578556

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer.


Subject(s)
Databases, Genetic , Genetic Variation , Genome, Fungal , Saccharomyces cerevisiae/genetics , Molecular Sequence Annotation , Sequence Alignment , Sequence Analysis, DNA , Sequence Analysis, Protein , User-Computer Interface
13.
Mol Biol Cell ; 26(24): 4307-12, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26628751

ABSTRACT

In the early 1970s, studies in Leland Hartwell's laboratory at the University of Washington launched the genetic analysis of the eukaryotic cell cycle and set the path that has led to our modern understanding of this centrally important process. This 45th-anniversary Retrospective reviews the steps by which the project took shape, the atmosphere in which this happened, and the possible morals for modern times. It also provides an up-to-date look at the 35 original CDC genes and their human homologues.


Subject(s)
Cell Cycle/genetics , Animals , Eukaryotic Cells/cytology , Eukaryotic Cells/physiology , Genes, cdc , Humans
14.
Genesis ; 53(8): 450-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25997651

ABSTRACT

Saccharomyces Genome Database is an online resource dedicated to managing information about the biology and genetics of the model organism, yeast (Saccharomyces cerevisiae). This information is derived primarily from scientific publications through a process of human curation that involves manual extraction of data and their organization into a comprehensive system of knowledge. This system provides a foundation for further analysis of experimental data coming from research on yeast as well as other organisms. In this review we will demonstrate how biocuration and biocurators add a key component, the biological context, to our understanding of how genes, proteins, genomes and cells function and interact. We will explain the role biocurators play in sifting through the wealth of biological data to incorporate and connect key information. We will also discuss the many ways we assist researchers with their various research needs. We hope to convince the reader that manual curation is vital in converting the flood of data into organized and interconnected knowledge, and that biocurators play an essential role in the integration of scientific information into a coherent model of the cell.


Subject(s)
Data Curation , Databases, Genetic , Saccharomyces/genetics , Animals , Humans , Saccharomyces/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
15.
G3 (Bethesda) ; 4(3): 389-98, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24374639

ABSTRACT

The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called "S288C 2010," was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science.


Subject(s)
Genome, Fungal , Saccharomyces cerevisiae/genetics , Chromosome Mapping , Databases, Factual , Internet , Open Reading Frames , Sequence Analysis, DNA , User-Computer Interface
16.
Nucleic Acids Res ; 36(Database issue): D577-81, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17982175

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) collects and organizes biological information about the chromosomal features and gene products of the budding yeast Saccharomyces cerevisiae. Although published data from traditional experimental methods are the primary sources of evidence supporting Gene Ontology (GO) annotations for a gene product, high-throughput experiments and computational predictions can also provide valuable insights in the absence of an extensive body of literature. Therefore, GO annotations available at SGD now include high-throughput data as well as computational predictions provided by the GO Annotation Project (GOA UniProt; http://www.ebi.ac.uk/GOA/). Because the annotation method used to assign GO annotations varies by data source, GO resources at SGD have been modified to distinguish data sources and annotation methods. In addition to providing information for genes that have not been experimentally characterized, GO annotations from independent sources can be compared to those made by SGD to help keep the literature-based GO annotations current.


Subject(s)
Databases, Genetic , Genes, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Computational Biology , Genome, Fungal , Genomics , Internet , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/physiology , User-Computer Interface , Vocabulary, Controlled
17.
Brief Bioinform ; 5(1): 9-22, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15153302

ABSTRACT

A scientific database can be a powerful tool for biologists in an era where large-scale genomic analysis, combined with smaller-scale scientific results, provides new insights into the roles of genes and their products in the cell. However, the collection and assimilation of data is, in itself, not enough to make a database useful. The data must be incorporated into the database and presented to the user in an intuitive and biologically significant manner. Most importantly, this presentation must be driven by the user's point of view; that is, from a biological perspective. The success of a scientific database can therefore be measured by the response of its users - statistically, by usage numbers and, in a less quantifiable way, by its relationship with the community it serves and its ability to serve as a model for similar projects. Since its inception ten years ago, the Saccharomyces Genome Database (SGD) has seen a dramatic increase in its usage, has developed and maintained a positive working relationship with the yeast research community, and has served as a template for at least one other database. The success of SGD, as measured by these criteria, is due in large part to philosophies that have guided its mission and organisation since it was established in 1993. This paper aims to detail these philosophies and how they shape the organisation and presentation of the database.


Subject(s)
Databases, Nucleic Acid , Genome, Fungal , Saccharomyces cerevisiae/genetics , Genomics , Information Dissemination , Information Storage and Retrieval , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...