Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 346: 123673, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38423270

ABSTRACT

Airborne microplastics (AMPs) have been identified in both indoor and outdoor environments and account for a large portion of an individual's daily exposure to microplastics. Thus, it is crucial to find effective methods to capture and control the levels of AMPs and ultimately reduce human exposure. While terrestrial plants have been recognized for their effectiveness in capturing airborne particles, little is known about their ability to capture AMPs. This study investigated the ability of 8 natural plant species and 2 artificial plants to capture AMPs, as well as the influence of leaf morphology on this retention. Plant leaves were exposed to AMPs for two weeks, and deposited AMPs were characterized using a Micro-Fourier Transform Infrared (µ-FTIR)spectroscopy. Selected cleaned leaves were further digested, and the presence of subsurface AMPs was confirmed using µ-Raman spectroscopy. Results revealed that AMPs were retained on the leaves of all selected plant species at concentrations ranging from 0.02 to 0.87 n/cm2. The highest average concentration was observed on an artificial plant with fenestrated leaves, followed by natural plant species with trichomes and leaflets. The lowest concentration was observed on a natural plant with smooth leaves. The majority (90%) of retained AMPs were fibres, and the remaining were fragments. Polyethylene terephthalate (PET) was the prominent polymer type. Additionally, AMP fragments were observed in the leaf subsurface in one selected species, likely retained within the leaf cuticles. The results suggest that plant leaves can indiscriminately retain AMPs on their surfaces and act as temporary sinks for AMPs. Additionally, indoor plants may provide a useful functional role in reducing indoor AMP concentrations, although longer-term studies are needed to ascertain their retention capacity more accurately over time and to evaluate the capability of indoor plants to act as a suitable, cost-effective candidate for reducing AMPs.


Subject(s)
Air Pollutants , Microplastics , Humans , Microplastics/analysis , Air Pollutants/analysis , Plastics/analysis , Environmental Monitoring/methods , Plant Leaves/chemistry
2.
Sci Total Environ ; 889: 164292, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37211105

ABSTRACT

Studies on airborne microplastics (AMPs) have reported higher abundance of AMPs in indoor air compared to outdoors. Most people spend more time indoors compared to outdoors, and it is therefore important to identify and quantify AMPs in indoor air to understand human exposure to AMPs. This exposure can vary among different individuals as they spend their time in different locations and different activity levels, and thus experience different breathing rates. In this study, AMPs ranging from 20-5000 µm were sampled across different indoor sites of Southeast Queensland using an active sampling technique. The highest indoor MP concentration was observed at a childcare site (2.25 ± 0.38 particles/m3), followed by an office (1.20 ± 0.14 particles/m3) and a school (1.03 ± 0.40 particles/m3). The lowest indoor MP concentration was observed inside a vehicle (0.20 ± 0.14 particles/m3), comparable to outdoor concentrations. The only shapes observed were fibers (98%) and fragments. MP fibers ranged from 71 to 4950 µm in length. Polyethylene terephthalate was the prominent polymer type at most sites. Using our measured airborne concentrations as inhaled air concentrations, we calculated the annual human exposure levels to AMPs using scenario-specific activity levels. Males between the ages of 18 to 64 were calculated to have the highest AMP exposure at 3187 ± 594 particles/year, followed by males ≥65 years at 2978 ± 628 particles/year. The lowest exposure of 1928 ± 549 particles/year was calculated for females between the ages of 5 to 17. This study provides the first report on AMPs for various types of indoor locations where individuals spend most of their time. Considering acute, chronic, industrial, and individual susceptibility, more detailed human inhalation exposure levels to AMPs should be estimated for a realistic appraisal of the human health risk, including how much of the inhaled particles are exhaled. SYNOPSIS: Limited research exists on the occurrence and the associated human exposure levels to AMPs in indoor locations where people spend most of their time. This study reports on the occurrence of AMPs at indoor locations and associated exposure levels using scenario-specific activity levels.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Male , Female , Humans , Adolescent , Young Adult , Adult , Middle Aged , Child, Preschool , Child , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Microplastics , Plastics/analysis , Australia , Environmental Monitoring/methods
3.
Environ Pollut ; 292(Pt A): 118358, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34653585

ABSTRACT

Migratory bird species may serve as vectors of contaminants to Antarctica through the local deposition of guano, egg abandonment, or mortality. To further investigate this chemical input pathway, we examined the contaminant burdens and profiles of the migratory South polar skua (Catharacta maccormicki) and compared them to the endemic Adélie penguin (Pygoscelis adeliae). A range of persistent organic pollutants were targeted in muscle and guano to facilitate differentiation of likely exposure pathways. A total of 56 of 65 targeted analytes were detected in both species, but there were clear profile and magnitude differences between the species. The South polar skua and Adélie penguin muscle tissue burdens were dominated by p,p'-dichlorodiphenyldichloroethylene (mean 5600 ng g-1 lw and 330 ng g-1 lw respectively) and hexachlorobenzene (mean 2500 ng g-1 lw and 570 ng g-1 lw respectively), a chemical profile characteristic of the Antarctic and Southern Ocean region. Species profile differences, indicative of exposure at different latitudes, were observed for polychlorinated biphenyls (PCBs), with lower chlorinated congeners and deca-chlorinated PCB-209 detected in South polar Skua, but not in Adélie penguins. Notably, the more recently used perfluoroalkyl substances and the brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, were detected in both species. This finding suggests local exposure, given the predicted slow and limited long-range environmental transport capacity of these compounds to the eastern Antarctic sector.


Subject(s)
Charadriiformes , Environmental Pollutants , Polychlorinated Biphenyls , Spheniscidae , Animals , Antarctic Regions , Environmental Monitoring , Environmental Pollutants/analysis , Persistent Organic Pollutants , Polychlorinated Biphenyls/analysis
4.
Environ Pollut ; 250: 953-959, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31085482

ABSTRACT

Short-chain chlorinated paraffins (SCCPs) are particularly prone to environmental dispersal through long range atmospheric transport. Consequently, they have been detected in biota and environmental matrices at both the North Pole and South Pole. This study shows the first detection of SCCPs in southern hemisphere humpback whales feeding in Antarctic waters. Blubber of specimens stranded along the Australian coastline was analysed and SCCPs were detected in 7 out of 9 individuals. Levels of SCCPs detected in this study were generally low with concentrations up to only 46 ng/g lw. These results were significantly lower than those detected in Northern Hemisphere odontocetes from previous studies, although no reported burdens in northern hemisphere baleen whales are available for comparison. Both the highest level and lowest ( C13. Further investigation is needed in order to evaluate the presence and distribution of SCCPs in the remote Antarctica ecosystem, and delineate longer term environmental consequences of recent inclusion of SCCPs under Annex A of the Stockholm Convention, securing their phase out in ratifying nations.


Subject(s)
Adipose Tissue/chemistry , Environmental Monitoring/methods , Humpback Whale/metabolism , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Animals , Antarctic Regions , Australia , Carbon/analysis
5.
Aquat Toxicol ; 167: 240-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26363275

ABSTRACT

This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n=44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para'-dichlorodiphenyldichloroethylene (p,p'-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC50 value) was approximately six times greater than the EC50 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p'-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p'-DDE alone. Thus, we provide the first cytotoxicological data for humpback whales and with establishment of the HuWa cell lines, a unique in vitro model for the study of the whales' sensitivity and cellular response to chemicals and other environmental stressors.


Subject(s)
Humpback Whale/physiology , Adipose Tissue/chemistry , Animals , Cell Line , Cell Survival/drug effects , Dichlorodiphenyl Dichloroethylene/metabolism , Dichlorodiphenyl Dichloroethylene/toxicity , Fibroblasts/cytology , Inhibitory Concentration 50 , Risk Assessment , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
6.
Environ Sci Technol ; 49(1): 103-12, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25478728

ABSTRACT

This study investigated the role of a permanently manned Australian Antarctic research station (Casey Station) as a source of contemporary persistent organic pollutants (POPs) to the local environment. Polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkylated substances (PFASs) were found in indoor dust and treated wastewater effluent of the station. PBDE (e.g., BDE-209 26-820 ng g(-1) dry weight (dw)) and PFAS levels (e.g., PFOS 3.8-2400 ng g(-1) (dw)) in dust were consistent with those previously reported in homes and offices from Australia, reflecting consumer products and materials of the host nation. The levels of PBDEs and PFASs in wastewater (e.g., BDE-209 71-400 ng L(-1)) were in the upper range of concentrations reported for secondary treatment plants in other parts of the world. The chemical profiles of some PFAS samples were, however, different from domestic profiles. Dispersal of chemicals into the immediate marine and terrestrial environments was investigated by analysis of abiotic and biotic matrices. Analytes showed decreasing concentrations with increasing distance from the station. This study provides the first evidence of PFAS input to Polar regions via local research stations and demonstrates the introduction of POPs recently listed under the Stockholm Convention into the Antarctic environment through local human activities.


Subject(s)
Environmental Monitoring , Halogenated Diphenyl Ethers/analysis , Hazardous Substances/analysis , Hydrocarbons, Fluorinated/analysis , Amphipoda/chemistry , Animals , Antarctic Regions , Bryophyta/chemistry , Dust/analysis , Environment , Geologic Sediments/analysis , Halogenation , Lichens/chemistry , Perciformes , Phytoplankton/chemistry , Research , Soil Pollutants/analysis , Wastewater/analysis
7.
Environ Toxicol Chem ; 33(7): 1638-49, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24733631

ABSTRACT

Humpback whales are iconic mammals at the top of the Antarctic food chain. Their large reserves of lipid-rich tissues such as blubber predispose them to accumulation of lipophilic contaminants throughout their lifetime. Changes in the volume and distribution of lipids in humpback whales, particularly during migration, could play an important role in the pharmacokinetics of lipophilic contaminants such as the organochlorine pesticide hexachlorobenzene (HCB). Previous models have examined constant feeding and nonmigratory scenarios. In the present study, the authors develop a novel heuristic model to investigate HCB dynamics in a humpback whale and its environment by coupling an ecosystem nutrient-phytoplankton-zooplankton-detritus (NPZD) model, a dynamic energy budget (DEB) model, and a physiologically based pharmacokinetic (PBPK) model. The model takes into account the seasonal feeding pattern of whales, their energy requirements, and fluctuating contaminant burdens in the supporting plankton food chain. It is applied to a male whale from weaning to maturity, spanning 20 migration and feeding cycles. The model is initialized with environmental HCB burdens similar to those measured in the Southern Ocean and predicts blubber HCB concentrations consistent with empirical concentrations observed in a southern hemisphere population of male, migrating humpback whales. Results show for the first time some important details of the relationship between energy budgets and organochlorine pharmacokinetics.


Subject(s)
Animal Migration , Humpback Whale/physiology , Hydrocarbons, Chlorinated/metabolism , Water Pollutants, Chemical/metabolism , Animals , Antarctic Regions , Female , Food Chain , Hexachlorobenzene/analysis , Hexachlorobenzene/metabolism , Hydrocarbons, Chlorinated/analysis , Lipid Metabolism , Male , Models, Biological , Pesticides/analysis , Pesticides/metabolism , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...