Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(4)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38261410

ABSTRACT

Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing "genetic analgesia" in Dup7 and offer previously untargeted routes to pain control.


Subject(s)
Williams Syndrome , Child , Humans , Ganglia, Spinal , Neurons , Pain/genetics , Synaptic Transmission , Williams Syndrome/genetics
2.
Neuroimage ; 233: 117891, 2021 06.
Article in English | MEDLINE | ID: mdl-33667672

ABSTRACT

The ubiquitous adoption of linearity for quantitative predictors in statistical modeling is likely attributable to its advantages of straightforward interpretation and computational feasibility. The linearity assumption may be a reasonable approximation especially when the variable is confined within a narrow range, but it can be problematic when the variable's effect is non-monotonic or complex. Furthermore, visualization and model assessment of a linear fit are usually omitted because of challenges at the whole brain level in neuroimaging. By adopting a principle of learning from the data in the presence of uncertainty to resolve the problematic aspects of conventional polynomial fitting, we introduce a flexible and adaptive approach of multilevel smoothing splines (MSS) to capture any nonlinearity of a quantitative predictor for population-level neuroimaging data analysis. With no prior knowledge regarding the underlying relationship other than a parsimonious assumption about the extent of smoothness (e.g., no sharp corners), we express the unknown relationship with a sufficient number of smoothing splines and use the data to adaptively determine the specifics of the nonlinearity. In addition to introducing the theoretical framework of MSS as an efficient approach with a counterbalance between flexibility and stability, we strive to (a) lay out the specific schemes for population-level nonlinear analyses that may involve task (e.g., contrasting conditions) and subject-grouping (e.g., patients vs controls) factors; (b) provide modeling accommodations to adaptively reveal, estimate and compare any nonlinear effects of a predictor across the brain, or to more accurately account for the effects (including nonlinear effects) of a quantitative confound; (c) offer the associated program 3dMSS to the neuroimaging community for whole-brain voxel-wise analysis as part of the AFNI suite; and (d) demonstrate the modeling approach and visualization processes with a longitudinal dataset of structural MRI scans.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Nonlinear Dynamics , Adolescent , Bayes Theorem , Brain/physiology , Child , Female , Humans , Longitudinal Studies , Male , Neuroimaging/methods , Neuroimaging/standards , Young Adult
3.
Nutr Neurosci ; 13(3): 116-22, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20423560

ABSTRACT

Insulin resistance is implicated in the pathophysiological changes associated with Alzheimer's disease, and pharmaceutical treatments that overcome insulin resistance improve memory function in subjects with mild cognitive impairment (MCI) and early Alzheimer's disease. Chromium (Cr) supplementation improves glucose disposal in patients with insulin resistance and diabetes. We sought to assess whether supplementation with Cr might improve memory and neural function in older adults with cognitive decline. In a placebo-controlled, double-blind trial, we randomly assigned 26 older adults to receive either chromium picolinate (CrPic) or placebo for 12 weeks. Memory and depression were assessed prior to treatment initiation and during the final week of treatment. We also performed functional magnetic resonance imaging (fMRI) scans on a subset of subjects. Although learning rate and retention were not enhanced by CrPic supplementation, we observed reduced semantic interference on learning, recall, and recognition memory tasks. In addition, fMRI indicated comparatively increased activation for the CrPic subjects in right thalamic, right temporal, right posterior parietal, and bifrontal regions. These findings suggest that supplementation with CrPic can enhance cognitive inhibitory control and cerebral function in older adults at risk for neurodegeneration.


Subject(s)
Chromium/therapeutic use , Cognition , Dementia/prevention & control , Dietary Supplements , Memory Disorders/prevention & control , Memory , Neuroprotective Agents/therapeutic use , Aged , Blood Glucose/analysis , Brain/metabolism , Chromium/urine , Dementia/blood , Dementia/metabolism , Dementia/urine , Depression/prevention & control , Double-Blind Method , Female , Humans , Learning , Male , Memory Disorders/blood , Memory Disorders/metabolism , Memory Disorders/urine , Mental Recall , Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/urine , Picolinic Acids/administration & dosage , Recognition, Psychology , Retention, Psychology
4.
J Agric Food Chem ; 58(7): 3996-4000, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20047325

ABSTRACT

The prevalence of dementia is increasing with expansion of the older adult population. In the absence of effective therapy, preventive approaches are essential to address this public health problem. Blueberries contain polyphenolic compounds, most prominently anthocyanins, which have antioxidant and anti-inflammatory effects. In addition, anthocyanins have been associated with increased neuronal signaling in brain centers, mediating memory function as well as improved glucose disposal, benefits that would be expected to mitigate neurodegeneration. This study investigated the effects of daily consumption of wild blueberry juice in a sample of nine older adults with early memory changes. At 12 weeks, improved paired associate learning (p = 0.009) and word list recall (p = 0.04) were observed. In addition, there were trends suggesting reduced depressive symptoms (p = 0.08) and lower glucose levels (p = 0.10). We also compared the memory performances of the blueberry subjects with a demographically matched sample who consumed a berry placebo beverage in a companion trial of identical design and observed comparable results for paired associate learning. The findings of this preliminary study suggest that moderate-term blueberry supplementation can confer neurocognitive benefit and establish a basis for more comprehensive human trials to study preventive potential and neuronal mechanisms.


Subject(s)
Blueberry Plants/chemistry , Dietary Supplements/analysis , Memory/drug effects , Plant Extracts/pharmacology , Aged , Aged, 80 and over , Female , Humans , Male
5.
Br J Nutr ; 103(5): 730-4, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20028599

ABSTRACT

Concord grape juice contains polyphenol compounds, which have antioxidant and anti-inflammatory properties and influence neuronal signalling. Concord grape juice supplementation has been shown to reduce inflammation, blood pressure and vascular pathology in individuals with CVD, and consumption of such flavonoid-containing foods is associated with a reduced risk for dementia. In addition, preliminary animal data have indicated improvement in memory and motor function with grape juice supplementation, suggesting potential for cognitive benefit in ageing humans. In this initial investigation of neurocognitive effects, we enrolled twelve older adults with memory decline but not dementia in a randomised, placebo-controlled, double-blind trial with Concord grape juice supplementation for 12 weeks. We observed significant improvement in a measure of verbal learning and non-significant enhancement of verbal and spatial recall. There was no appreciable effect of the intervention on depressive symptoms and no effect on weight or waist circumference. A small increase in fasting insulin was observed for those consuming grape juice. These preliminary findings suggest that supplementation with Concord grape juice may enhance cognitive function for older adults with early memory decline and establish a basis for more comprehensive investigations to evaluate potential benefit and assess mechanisms of action.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Memory Disorders/drug therapy , Memory/drug effects , Plant Preparations/pharmacology , Vitis/chemistry , Aged , Aged, 80 and over , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Cardiovascular Diseases/drug therapy , Cognition Disorders/drug therapy , Cognition Disorders/prevention & control , Dietary Supplements , Double-Blind Method , Female , Flavonoids/pharmacology , Flavonoids/therapeutic use , Fruit , Humans , Insulin/blood , Learning/drug effects , Male , Phenols/pharmacology , Phenols/therapeutic use , Phytotherapy , Plant Preparations/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...