Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 13(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38539796

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. Given the link between oxidative stress and AD, many studies focus on the identification of natural antioxidants against AD. Although their antioxidant capacity is important, increasing data suggest that additional activities are related to their beneficial effects, including properties against amyloid beta (Aß) aggregation. Sideritis spp. (mountain tea) extracts possess not only antioxidant activity but also other bioactivities that confer neuroprotection. Although various Sideritis spp. extracts have been extensively studied, there are scarce data on S. clandestina subsp. peloponnesiaca (SCP) phytochemical composition and neuroprotective potential, while nothing is known of the responsible compounds. Given that SCP is a weaker antioxidant compared to other Sideritis spp., here, we investigated its potential beneficial properties against Aß aggregation. We characterized different SCP extracts and revealed their anti-aggregation activity by taking advantage of established C. elegans AD models. Importantly, we identified two pure compounds, namely, sideridiol and verbascoside, being responsible for the beneficial effects. Furthermore, we have revealed a potential anti-Aß aggregation mechanism for sideridiol. Our results support the use of mountain tea in the elderly against dementia and demonstrate the activity of sideridiol against Aß aggregation that could be exploited for drug development.

2.
Biomedicines ; 11(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37239029

ABSTRACT

Today, Alzheimer's disease (AD)-the most common neurodegenerative disorder, which affects 50 million people-remains incurable. Several studies suggest that one of the main pathological hallmarks of AD is the accumulation of abnormal amyloid beta (Aß) aggregates; therefore, many therapeutic approaches focus on anti-Aß aggregation inhibitors. Taking into consideration that plant-derived secondary metabolites seem to have neuroprotective effects, we attempted to assess the effects of two flavones-eupatorin and scutellarein-on the amyloidogenesis of Aß peptides. Biophysical experimental methods were employed to inspect the aggregation process of Aß after its incubation with each natural product, while we monitored their interactions with the oligomerized Aß through molecular dynamics simulations. More importantly, we validated our in vitro and in silico results in a multicellular organismal model-namely, Caenorhabditis elegans-and we concluded that eupatorin is indeed able to delay the amyloidogenesis of Aß peptides in a concentration-dependent manner. Finally, we propose that further investigation could lead to the exploitation of eupatorin or its analogues as potential drug candidates.

3.
Pharmaceutics ; 15(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986878

ABSTRACT

Type I fimbriae are the main adhesive organelles of uropathogenic Escherichia coli (UPEC), consisting of four different subunits. Their component with the most important role in establishing bacterial infections is the FimH adhesin located at the fimbrial tip. This two-domain protein mediates adhesion to host epithelial cells through interaction with terminal mannoses on epithelial glycoproteins. Here, we propose that the amyloidogenic potential of FimH can be exploited for the development of therapeutic agents against Urinary Tract Infections (UTIs). Aggregation-prone regions (APRs) were identified via computational methods, and peptide-analogues corresponding to FimH lectin domain APRs were chemically synthesized and studied with the aid of both biophysical experimental techniques and molecular dynamic simulations. Our findings indicate that these peptide-analogues offer a promising set of antimicrobial candidate molecules since they can either interfere with the folding process of FimH or compete for the mannose-binding pocket.

4.
Biochim Biophys Acta Mol Basis Dis ; 1868(7): 166384, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35292360

ABSTRACT

Clusterin is a heterodimeric glycoprotein (α- and ß-chain), which has been described as an extracellular molecular chaperone. In humans, clusterin is an amyloid-associated protein, co-localizing with fibrillar deposits in several amyloidoses, including Alzheimer's disease. To clarify its potential implication in amyloid formation, we located aggregation-prone regions within the sequence of clusterin α-chain, via computational methods. We had peptide-analogues, which correspond to each of these regions, chemically synthesized and experimentally demonstrated that all of them can form amyloid-like fibrils. We also provide evidence that the same peptide-analogues can inhibit amyloid-ß fibril formation, potentially making them appropriate drug candidates for Alzheimer's disease. At the same time, our findings hint that the respective aggregation-prone clusterin regions may be implicated in the molecular mechanism in which clusterin inhibits amyloid formation. Furthermore, we suggest that molecular chaperones with amyloidogenic properties might have a role in the regulation of amyloid formation, essentially acting as functional amyloids.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid/metabolism , Amyloidosis/drug therapy , Clusterin/chemistry , Clusterin/metabolism , Clusterin/pharmacology , Glycoproteins , Humans
5.
Sci Rep ; 11(1): 4572, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633188

ABSTRACT

Alzheimer disease (AD) is a neurodegenerative disorder with an -as of yet- unclear etiology and pathogenesis. Research to unveil disease processes underlying AD often relies on the use of neurodegenerative disease model organisms, such as Caenorhabditis elegans. This study sought to identify biological pathways implicated in AD that are conserved in Homo sapiens and C. elegans. Protein-protein interaction networks were assembled for amyloid precursor protein (APP) and Tau in H. sapiens-two proteins whose aggregation is a hallmark in AD-and their orthologs APL-1 and PTL-1 for C. elegans. Global network alignment was used to compare these networks and determine similar, likely conserved, network regions. This comparison revealed that two prominent pathways, the APP-processing and the Tau-phosphorylation pathways, are highly conserved in both organisms. While the majority of interactions between proteins in those pathways are known to be associated with AD in human, they remain unexamined in C. elegans, signifying the need for their further investigation. In this work, we have highlighted conserved interactions related to AD in humans and have identified specific proteins that can act as targets for experimental studies in C. elegans, aiming to uncover the underlying mechanisms of AD.


Subject(s)
Alzheimer Disease/metabolism , Biomarkers , Caenorhabditis elegans/metabolism , Signal Transduction , Alzheimer Disease/etiology , Amyloid beta-Protein Precursor/metabolism , Animals , Caenorhabditis elegans Proteins/metabolism , Computational Biology/methods , Disease Models, Animal , Disease Susceptibility , Humans , Microtubule-Associated Proteins/metabolism , Phosphorylation , Protein Interaction Mapping , Protein Interaction Maps , Proteome , Proteomics/methods , tau Proteins/metabolism
6.
Plants (Basel) ; 11(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35009013

ABSTRACT

Plant natriuretic peptides (PNPs) are hormones that have been extracted from many different species, with the Arabidopsis thaliana PNP (AtPNP-A) being the most studied among them. AtPNP-A is a signaling molecule that consists of 130 residues and is secreted into the apoplast, under conditions of biotic or abiotic stress. AtPNP-A has distant sequence homology with human ANP, a protein that forms amyloid fibrils in vivo. In this work, we investigated the amyloidogenic properties of a 34-residue-long peptide, located within the AtPNP-A sequence, in three different pH conditions, using transmission electron microscopy, X-ray fiber diffraction, ATR FT-IR spectroscopy, Congo red and Thioflavin T staining assays. We also utilize bioinformatics tools to study its association with known plant amyloidogenic proteins and other A. thaliana proteins. Our results reveal a new case of a pH-dependent amyloid forming peptide in A. thaliana, with a potential functional role.

7.
J Struct Biol ; 207(3): 260-269, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31170474

ABSTRACT

ALECT2 (leukocyte chemotactic factor 2) amyloidosis is one of the most recently identified amyloid-related diseases, with LECT2 amyloids commonly found in different types of tissues. Under physiological conditions, LECT2 is a 16 kDa multifunctional protein produced by the hepatocytes and secreted into circulation. The pathological mechanisms causing LECT2 transition into the amyloid state are still largely unknown. In the case of ALECT2 patients, there is no disease-causing mutation, yet almost all patients carry a common polymorphism that appears to be necessary but not sufficient to directly trigger amyloidogenesis. In this work, we followed a reductionist methodology in order to detect critical amyloidogenic "hot-spots" during the fibrillation of LECT2. By associating experimental and computational assays, this approach reveals the explicit amyloidogenic core of human LECT2 and pinpoints regions with distinct amyloidogenic properties. The fibrillar architecture of LECT2 polymers, based on our results, provides a wealth of detailed information about the amyloidogenic "hot-spot" interactions and represents a starting point for future peptide-driven intervention in ALECT2 amyloidosis.


Subject(s)
Amyloid/chemistry , Amyloidosis/genetics , Intercellular Signaling Peptides and Proteins/chemistry , Polymorphism, Single Nucleotide , Amino Acid Sequence , Amyloid/metabolism , Amyloid/ultrastructure , Amyloidosis/diagnosis , Amyloidosis/metabolism , Binding Sites/genetics , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Microscopy, Electron , Models, Molecular , Protein Aggregates , Protein Aggregation, Pathological , Protein Binding , Protein Conformation
8.
Amyloid ; 26(3): 112-117, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31094220

ABSTRACT

Amyloid fibrils are formed when soluble proteins misfold into highly ordered insoluble fibrillar aggregates and affect various organs and tissues. The deposition of amyloid fibrils is the main hallmark of a group of disorders, called amyloidoses. Curiously, fibril deposition has been also recorded as a complication in a number of other pathological conditions, including well-known neurodegenerative or endocrine diseases. To date, amyloidoses are roughly classified, owing to their tremendous heterogeneity. In this work, we introduce AmyCo, a freely available collection of amyloidoses and clinical disorders related to amyloid deposition. AmyCo classifies 75 diseases associated with amyloid deposition into two distinct categories, namely 1) amyloidosis and 2) clinical conditions associated with amyloidosis. Each database entry is annotated with the major protein component (causative protein), other components of amyloid deposits and affected tissues or organs. Database entries are also supplemented with appropriate detailed annotation and are referenced to ICD-10, MeSH, OMIM, PubMed, AmyPro and UniProtKB databases. To our knowledge, AmyCo is the first attempt towards the creation of a complete and an up-to-date repository, containing information about amyloidoses and diseases related to amyloid deposition. The AmyCo web interface is available at http://bioinformatics.biol.uoa.gr/amyco .


Subject(s)
Alzheimer Disease/classification , Amyloid/genetics , Amyloidosis/classification , Parkinson Disease/classification , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid/metabolism , Amyloidosis/diagnosis , Amyloidosis/genetics , Amyloidosis/metabolism , Databases, Factual , Genome-Wide Association Study , Humans , Mutation , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Parkinson Disease/metabolism , Terminology as Topic
9.
J Struct Biol ; 203(1): 27-36, 2018 07.
Article in English | MEDLINE | ID: mdl-29501724

ABSTRACT

The Calcitonin-gene related peptide (CGRP) family is a group of peptide hormones, which consists of IAPP, calcitonin, adrenomedullin, intermedin, αCGRP and ßCGRP. IAPP and calcitonin have been extensively associated with the formation of amyloid fibrils, causing Type 2 Diabetes and Medullary Thyroid Carcinoma, respectively. In contrast, the potential amyloidogenic properties of αCGRP still remain unexplored, although experimental trials have indicated its presence in deposits, associated with the aforementioned disorders. Therefore, in this work, we investigated the amyloidogenic profile of αCGRP, a 37-residue-long peptide hormone, utilizing both biophysical experimental techniques and Molecular Dynamics simulations. These efforts unravel a novel amyloidogenic member of the CGRP family and provide insights into the mechanism underlying the αCGRP polymerization.


Subject(s)
Amyloidogenic Proteins/chemistry , Calcitonin Gene-Related Peptide/chemistry , Amyloidogenic Proteins/physiology , Calcitonin Gene-Related Peptide/physiology , Humans , Molecular Dynamics Simulation , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...