Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000304

ABSTRACT

This publication presents the effect of hypochlorous acid dry mist as a disinfectant on selected bacteria, viruses, spores, and fungi as well as on portable Microlife OXY 300 finger pulse oximeters and electronic systems of Raspberry Pi Zero microcomputers. The impact of hypochlorous acid on microbiological agents was assessed at concentrations of 300, 500, and 2000 ppm of HClO according to PN-EN 17272 (Variant I). Studies of the impact of hypochlorous acid fog on electronic components were carried out in an aerosol chamber at concentrations of 500 ppm and 2000 ppm according to two models consisting of 30 (Variant II) and 90 fogging cycles (Variant III). Each cycle included the process of generating a dry mist of hypochlorous acid (25 mL/m3), decontamination of the test elements, as well as cleaning the chamber of the disinfectant agent. The exposure of the materials examined on hypochlorous acid dry mist in all variants resulted in a decrease in the number of viruses, bacteria, spores, and fungi tested. In addition, the research showed that in the variants of hypochlorous acid fogging cycles analyzed, no changes in performance parameters and no penetration of dry fog of hypochlorous acid into the interior of the tested medical devices and electronic systems were observed.


Subject(s)
Decontamination , Disinfectants , Fungi , Hypochlorous Acid , Hypochlorous Acid/pharmacology , Fungi/drug effects , Disinfectants/pharmacology , Decontamination/methods , Bacteria/drug effects , Viruses/drug effects , Spores, Fungal/drug effects , Spores, Bacterial/drug effects , Electronics
2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473931

ABSTRACT

This paper presents the results of research on the impact of graphene paper on selected bacterial strains. Graphene oxide, from which graphene paper is made, has mainly bacteriostatic properties. Therefore, the main goal of this research was to determine the possibility of using graphene paper as a carrier of a medicinal substance. Studies of the degree of bacterial inhibition were performed on Staphylococcus aureus and Pseudomonas aeruginosa strains. Graphene paper was analyzed not only in the state of delivery but also after the incorporation of the antibiotics ciprofloxacin, cefazolin, and methicillin into its structures. In addition, Fourier-Transform Infrared Spectroscopy, contact angle, and microscopic analysis of bacteria on the surface of the examined graphene paper samples were also performed. Studies have shown that graphene paper with built-in ciprofloxacin had a bactericidal effect on the strains of Staphylococcus aureus and Pseudomonas aeruginosa. In contrast, methicillin, as well as cefazolin, deposited on graphene paper acted mainly locally. Studies have shown that graphene paper can be used as a carrier of selected medicinal substances.


Subject(s)
Graphite , Pseudomonas Infections , Staphylococcal Infections , Humans , Cefazolin/pharmacology , Ciprofloxacin/pharmacology , Methicillin/pharmacology , Graphite/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Bacteria , Microbial Sensitivity Tests , Pseudomonas aeruginosa
3.
J Inflamm Res ; 16: 5477-5493, 2023.
Article in English | MEDLINE | ID: mdl-38026239

ABSTRACT

Background: Bacterial skin infections, including Staphylococcus aureus, are a powerful and still not fully resolved problem. The aim of this research was to determine the possibility of using a complex of graphene oxide (GO) encrusted with silver nanoparticles as an effective antibacterial agent against S. aureus and to assess its pro-inflammatory properties. Methods: The tests were carried out in vitro on EpiDerm™ Skin, an artificial skin model (MatTek in vitro Life Science Laboratories, Slovak Republic), and the fibroblast cell line (HFF-2 from ATCC, USA). Both models were infected with S. aureus bacteria (ATCC 25923) and then treated with antibiotics or our experimental factors: silver nanoparticles (AgNPs, Nano-koloid, Poland), graphene oxide (GO, NanoPoz, Poland), and complex AgNP-GO (hydrocolloid created by self-assembly). Results: The antibacterial effectiveness of the AgNP-GO complex was equivalent to that of the antibiotic. In addition, an increase in the level of pro-inflammatory cytokines was observed under the influence of antibiotic administration, in contrast to the effect of AgNP-GO, which showed very limited pro-inflammatory activity. Conclusion: Hydrocolloid of the AgNP-GO complex, administered in the form of a liquid dressing, may act as an antibacterial agent and also reduce inflammation induced by S. aureus infection.

4.
Materials (Basel) ; 16(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37241356

ABSTRACT

The study aimed to test the durability of coatings under natural conditions. The present study focused on the changes in wettability and additional properties of the coatings under natural conditions. The specimens were subjected to outdoor exposure and additionally immersed in the pond. Impregnating porous anodized aluminum is a popular production method for hydrophobic and superhydrophobic surfaces. However, prolonged exposure of such coatings to natural conditions causes leaching of the impregnate and, thus, the loss of hydrophobic properties. After the loss of hydrophobic properties, all kinds of impurities and fouling adhere better to the porous structure. Additionally, deterioration of anti-icing and anti-corrosion properties was observed. Finally, the self-cleaning, anti-fouling, anti-icing and anti-corrosion properties were comparable or even worse to those of the hydrophilic coating. In the case of superhydrophobic specimens, during outdoor exposure there was no loss of superhydrophobicity, self-cleaning and anti-corrosion properties. Still, despite this, the icing delay time dropped. During outdoor exposure, the structure, which initially had anti-icing properties, may degrade. Nevertheless, the hierarchical structure responsible for the superhydrophobic effect can still be preserved. The superhydrophobic coating initially had the best anti-fouling properties. However, the coating was also gradually losing its superhydrophobic properties during water immersion.

5.
Materials (Basel) ; 16(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37048868

ABSTRACT

This paper presents the results of an analysis of carbon (in the form of graphene oxide) deposited on the surface of threads made from stainless steel 316 and titanium alloy Ti6Al4V used in orthopedics using Laser Induced Breakdown Spectroscopy (LIBS). The aim of the article is to indicate the possibility of using the LIBS spectra for the study of thin layers, including graphene derivatives and other elements. Stratigraphic measurements allowed the detection of differences in the spectra peaks of individual elements, not only in the surface layer itself and in the native material, but also in the intermediate layer connecting the two layers. Due to the clear difference in the outline of the spectrum of graphene oxide and the spectrum of the native material of the samples analyzed, a clear incorporation of carbon atoms into the surface layer was observed. A factor analysis was performed, which confirmed the incorporation of graphene oxide into the surface layer of the native material of the elements examined.

6.
Materials (Basel) ; 15(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36556681

ABSTRACT

A material strength investigation along with a detailed microfractography analysis of fractures formed during static tensile tests of steel Armstal 550 was performed. The tests in this research were conducted in a temperature range of 298 to 973 K. In addition, during tensile tests at ambient temperature, optical measurements of strain maps and the curvature of the neck were performed. The minimum cross-sectional diameter and the radius of the neck curvature during tensile tests were obtained. The data can be directly used to obtain the true stress-strain curve. The material property analysis confirmed the high strength of the Armstal 550 alloy. The ultimate strength at room temperature equals 2.14 GPa, whereas the yield point equals 1.65 GPa. A decrease in the strength parameters along with an increase in temperature was noted. This is a typical phenomenon related to a change in the density and thermal expansion of steel under the influence of the temperature increase. For example, at a temperature of 500 °C, the ultimate strength is more than 50% less than at room temperature. An in-depth analysis of the metallography and microfractography of fractures resulting from static tensile tests showed the formation of atypical nano- and microstructures with an elongated shape. Local nano- and microstructures were observed at different levels of intensity for different temperatures. The largest clusters of nanoparticles were present on the surfaces of the specimens examined at a temperature of 973 K. Scanning microscopy analysis confirmed the presence of molybdenum oxides.

7.
Int J Mol Sci ; 23(12)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35743008

ABSTRACT

This work shows the effect of graphene oxide deposition on microsieves' surfaces of gold and nickel foils, on DU 145 tumor cells of the prostate gland. The sieves were made by a laser ablation process. The graphene oxide (GO) deposition process was characterized by the complete covering of the inner edges of the microholes and the flat surface between the holes with GO. Electron microscanning studies have shown that due to the deposition method applied, graphene oxide flakes line the interior of the microholes, reducing the unevenness of the downstream surfaces during the laser ablation process. The presence of graphene oxide was confirmed by Fourier infrared spectroscopy. During the screening (sieving) process, the microsieves were placed in a sieve column. Gold foil is proven to be a very good material for the screening of cancer cells, but even more so after screening as a substrate for re-culture of the DU 145. This allows a potential recovery of the cells and the development of a targeted therapy. The sieved cells were successfully grown on the microsieves used in the experiment. Graphene oxide remaining on the surface of the nickel sieve has been observed to increase the sieving effect. Although graphene oxide improved separation efficiency by 9.7%, the nickel substrate is not suitable for re-culturing of the Du 145 cells and the development of a targeted therapy compared to the gold one.


Subject(s)
Graphite , Prostatic Neoplasms , Gold/chemistry , Gold/pharmacology , Graphite/chemistry , Graphite/pharmacology , Humans , Male , Nickel/chemistry , Nickel/pharmacology , Oxides/chemistry , Oxides/pharmacology , Prostate
8.
Materials (Basel) ; 15(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35160987

ABSTRACT

The aim of this study was to obtain a superhydrophobic coating by modifying anodized aluminum using polydimethylsiloxane (PDMS). In order to obtain a superhydrophobic coating on an aluminum substrate, a multistage treatment was implemented. Specimens of aluminum were treated by abrasive blasting, anodization in sulfuric acid, impregnation by PDMS, rinsing in toluene to remove excess of PDMS, and curing. A rough surface with an additional low free energy layer on it resulted in a superhydrophobic effect. The coating obtained has an average contact angle of 159°. The specimens were tested in terms of durability in natural conditions. Additionally, anti-icing and anti-fouling properties were evaluated. The coating was compared with anodized aluminum obtained by a basic process.

9.
Materials (Basel) ; 14(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885490

ABSTRACT

A near 1-keV photons from the Xe/He plasma produced by the interaction of laser beam with a double stream gas puff target were employed for studies of L absorption edges of period 4 transitional metals with atomic number Z from 26 to 30. The dual-channel, compact NEXAFS system was employed for the acquisition of the absorption spectra. L1-3 absorption edges of the samples were identified in transmission mode using broadband emission from the Xe/He plasma to show the applicability of such source and measurement system to the NEXAFS studies of the transition metals, including magnetic materials.

10.
Materials (Basel) ; 14(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34772200

ABSTRACT

This paper presents the results of investigations of the effect of graphene oxide and surface shot peening on the mechanical properties and fatigue life of bolts made of austenitic 304 steel. An innovative method for the uniform deposition of graphene oxide on screws is presented. The process involved activating the surface using plasma and then performing graphene oxide deposition using centrifugal force and vacuum drying. The screw specimens prepared in this way were subjected to a surface peening process. Comparative studies have shown that the combination of graphene oxide deposition and shot peening processes results in an increase in fatigue life of approximately 42 ÷ 275% (depending on the stress amplitude level) compared to the as-delivered samples. The results presented are promising and may provide a basis for further research on the application of graphene and its derivatives to increase fatigue life and improve the mechanical properties of machine components.

11.
Materials (Basel) ; 15(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35009211

ABSTRACT

This paper presents the effect of deposited graphene oxide coating on fatigue life of austenitic steel 1.4541 at 20 °C, 100 °C, and 200 °C. The study showed a decrease in the fatigue life of samples with a deposited graphene oxide layer in comparison with reference samples at 20 °C and 100 °C. However, an increase in fatigue life of samples with a deposited graphene oxide layer in comparison with reference samples occurred at 200 °C. This relationship was observed for the nominal stress amplitude of 370 and 420 MPa. Measurements of temperature during the tensile failure of the sample and microfractographic analysis of fatigue fractures were performed. Tests have shown that graphene oxide deposited on the steel surface provides an insulating layer. A higher temperature of the samples with a deposited graphene oxide layer was observed during fracture compared to the reference samples.

12.
Materials (Basel) ; 13(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050094

ABSTRACT

This paper presents the results of the interaction of graphene oxide (GO) on MDA-MB-231 and SW-954 cancer cell lines. The tests were carried out in two variants. In the first one, GO was sprayed on a Petri dish and then, the cancer cell lines were cultured. In the second variant, the cells were covered with an aerosol containing GO. In both variants, cancer cell lines were incubated and tested every 24, 48, and 72 h. After each time period, cell viability and surface morphology were measured. The tests after 72 h showed that coating with GO aerosol caused a reduction in cell viability by 52.7% and 26.4% for MDA-MB-231 and SW-954 cancer cell lines, respectively, with respect to a reference sample (without the influence of GO aerosol). Tests where GO is a culture medium demonstrated a decrease in cell viability by approximately 4.3% compared to a reference sample for both considered cell lines.

13.
Materials (Basel) ; 13(7)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231155

ABSTRACT

The graphene paper microsieves can be applied in the filtration of biological fluids or separation of solid particles from exploitation fluids. To produce graphene paper microsieves for specific applications, good control over fabrication should be achieved. In this study, a laser ablation method using a picosecond laser was applied to fabricate graphene paper microsieves. Holes in the microsieves were drilled using pulsed laser radiation with a pulse energy from 5 to 100 µJ, a duration of 60 ps, a wavelength of 355 nm, and a repetition rate of 1 kHz. The impact method was applied using 10 to 100 pulses to drill one hole. To produce holes of a proper diameter which could separate biological particles of a certain size (≥10 µm), optimum parameters of graphene paper laser ablation were defined using the MATLAB software taking into account laser pulse energy, repetition rate, and a desired hole diameter. A series of structural tests were carried out to determine the quality of an edge and a hole shape. Experimental results and Laguerre-Gauss calculations in MATLAB were then compared to perform the analysis of the distribution of diffraction fringes. Optimum experimental parameters were determined for which good susceptibility of the graphene paper to laser processing was observed.

14.
Beilstein J Nanotechnol ; 10: 882-893, 2019.
Article in English | MEDLINE | ID: mdl-31165015

ABSTRACT

The results of studies on the fabrication and characterization of silver nanoisland films (SNIFs) using pulsed laser deposition (PLD) and the evaluation of these films as potential surface-enhanced Raman scattering (SERS) substrates are reported. The SNIFs with thicknesses in a range of 4.7 ± 0.2 nm to 143.2 ± 0.2 nm were deposited under different conditions on silicon substrates. Size and morphology of the fabricated silver nanoislands mainly depend on the substrate temperature, and number and energy of the laser pulses. SERS properties of the fabricated films were evaluated by measuring SERS spectra of para-mercaptoaniline (pMA) molecules adsorbed on them. SERS enhancement factors are shown to depend on the SNIF morphology, which is modified by changes of the deposition conditions. The highest enhancement factor in the range of 105 was achieved for SNIFs that have oval and circular silver nanoislands with small distances between them.

15.
Adv Clin Exp Med ; 28(6): 815-823, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30740943

ABSTRACT

BACKGROUND: The accessibility of the remineralizing ions in teeth's environment is essential for their incorporation into caries-affected dentin. Novel bioglass-reinforced materials capable of releasing fluoride, calcium and phosphates may be particularly useful in the tissue remineralization process. A novel restorative material, ACTIVA BioActive-Restorative (Pulpdent Corp., Watertown, USA), is a hydrophilic resin-modified glassionomer cement (RMGIC) enriched with bioglass particles and fortified with a patented rubberized polymer resin. Its application in restorative dentistry may be significant, promoting remineralization of carious lesions. OBJECTIVES: The aim of the study was to compare the fluoride ion release profiles from a bioglass-reinforced RMGIC, a conventional glass-ionomer cement (GIC) and a nanohybrid restorative polymer resin. MATERIAL AND METHODS: The quantity of fluoride ions released from ACTIVA, Ketac Molar Quick Aplicap and Tetric EvoCeram was assessed using a fluoride-specific electrode. The surface characteristics of the preand post-experimental specimens were studied using a scanning electron microscope (SEM) and confocal microscope. An X-ray powder diffraction (XRD) analysis was additionally used to examine the chemical compositions of the dental materials. RESULTS: The greatest quantity of fluoride ions was freed from the GIC specimens (20.698-54.118 ppm), followed by the bioglass-reinforced RMGIC (from 1.236 to 15.552 ppm) and nanohybrid polymer resin (0.370-1.148 ppm). The pre-experimental specimens of the bioglass-reinforced RMGIC were porous, while the post-experimental specimens were smoother with visible micro-cracks. The XRD analysis of the bioglass particles confirmed that the material was composed mainly of fluoride (27.70 mass%), silicon (15.62 mass%), aluminum (5.91 mass%), and calcium (5.40 mass%). CONCLUSIONS: The fluoride ion release profile of ACTIVA was lower than the GIC Keta Molar Quick Aplicap, but significantly higher than the nanohybrid restorative polymer resin Tetric EvoCeram.


Subject(s)
Composite Resins , Fluorides/chemistry , Materials Testing/methods , Dental Caries , Dental Materials , Humans , Resin Cements/chemistry
16.
Ann Transplant ; 20: 720-8, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26632547

ABSTRACT

BACKGROUND: Graft-versus-host-disease (GvHD) is the major cause of morbidity and mortality after stem cell transplantation. The development of early prediction methods is therefore of importance. Our aim was to analyze the usefulness of early donor chimerism monitoring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in T cells and in CD4+ and CD8+ (lineage chimerism) for GvHD prediction. MATERIAL AND METHODS: Chimerism was analyzed in 76 consecutive adult patients using RQ-PCR TaqMan technology on DNA extracted from Pan T, CD4+, and CD8+ cell subsets on Day 5, 10, 15 and 30 after allo-HSCT. RESULTS: The threshold of chimerism predictive for GvHD was the same for all tested cell subsets. In acute myeloid leukemia (AML) patients treated with myeloablative conditioning (MAC), the threshold predictive for acute graft versus host disease was 95% and 99% for Day 10 and Day 15, respectively. In patients treated with reduced intensity conditioning (RIC), the threshold predictive for chronic graft versus host disease was 98% on Day 10. The differences were statistically significant. CONCLUSIONS: Chimerism analysis in T cell subsets by RQ-PCR on Day 10 and Day 15 after transplantation is useful for prediction of aGvHD (AML patients after MAC) and cGvHD (patients after RIC). However, there was no difference in the results between chimerism in the T cell subsets. Our RQ-PCR protocol was highly sensitive and proved effective for analysis of lineage chimerism.


Subject(s)
Chimerism , Graft vs Host Disease/etiology , Hematologic Neoplasms/surgery , Real-Time Polymerase Chain Reaction/methods , Stem Cell Transplantation/adverse effects , Acute Disease , Adolescent , Adult , Chronic Disease , Cohort Studies , Female , Graft Rejection , Graft Survival , Graft vs Host Disease/diagnosis , Hematologic Neoplasms/mortality , Hematologic Neoplasms/pathology , Humans , Linear Models , Male , Middle Aged , Poland , Predictive Value of Tests , Prognosis , Retrospective Studies , Risk Assessment , Statistics, Nonparametric , Stem Cell Transplantation/methods , T-Lymphocyte Subsets/immunology , Transplantation Conditioning/methods , Transplantation, Homologous , Young Adult
17.
Pol Merkur Lekarski ; 21(123): 227-31, 2006 Sep.
Article in Polish | MEDLINE | ID: mdl-17163182

ABSTRACT

UNLABELLED: It is recommended that all patients after allogeneic hematopoietic stem cell transplantation (alloHSCT) should be monitored for CMV infection markers. The aim of the study was to check the usefulness of quantitative DNA CMV monitoring after alloHSCT. MATERIAL AND METHOD: DNA CMV was tested by real-time PCR in sera and blood samples twice a week until 30th day after alloHSCT thereafter, once a week until 100th day and then, once every 2-3 weeks. 832 samples from 16 patients were tested. All patients were anti-CMV positive or/and received stem cells from seropositive donors. Introduction of antiviral treatment was based on initial viral load and its rate of increase. RESULTS: DNA CMV was detected in 13/16 patients; in 3 before 30h day after allo HSCT (group I) and in 10 (group II) after 30th day. In all patients from group I clinical symptoms were observed and DNA CMV was detected in sera and blood samples. Peak viral load was 2490-34 620 geq/ml. Although antiviral treatment was applied, reinfection was observed and infection lasted from 28 to 91 days. In 6 group II patients, clinical symptoms were observed and DNA CMV in sera and blood was detected for 16-56 days, DNA CMV peak load was 100-8950 geq/ml. In the remaining 4 patients, no clinical symptoms were observed--DNA CMV was detected in blood only for 7 to 14 days. In one patient with peak viral load 10,540 geq/ml, antiviral treatment was applied. In 3 with viral load of 400-2000 geq/ml, treatment was not introduced. The quantitative DNA CMV results were taken into account before the change of antiviral drugs for more effective drugs and the decrease of drug dose due to side effects. CONCLUSIONS: Application of quantititative DNA CMV testing allowed to optimise antiviral drug administration in immunosupressed patients after alloHSCT


Subject(s)
Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Polymerase Chain Reaction/methods , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biomarkers/analysis , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/prevention & control , DNA, Viral/blood , Ganciclovir/pharmacology , Ganciclovir/therapeutic use , Humans , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...