Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 13: 58, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22816678

ABSTRACT

BACKGROUND: Oxygen may damage the lung directly via generation of reactive oxygen species (ROS) or indirectly via the recruitment of inflammatory cells, especially neutrophils. Overexpression of extracellular superoxide dismutase (EC-SOD) has been shown to protect the lung against hyperoxia in the newborn mouse model. The CXC-chemokine receptor antagonist (Antileukinate) successfully inhibits neutrophil influx into the lung following a variety of pulmonary insults. In this study, we tested the hypothesis that the combined strategy of overexpression of EC-SOD and inhibiting neutrophil influx would reduce the inflammatory response and oxidative stress in the lung after acute hyperoxic exposure more efficiently than either single intervention. METHODS: Neonate transgenic (Tg) (with an extra copy of hEC-SOD) and wild type (WT) were exposed to acute hyperoxia (95% FiO2 for 7 days) and compared to matched room air groups. Inflammatory markers (myeloperoxidase, albumin, number of inflammatory cells), oxidative markers (8-isoprostane, ratio of reduced/oxidized glutathione), and histopathology were examined in groups exposed to room air or hyperoxia. During the exposure, some mice received a daily intraperitoneal injection of Antileukinate. RESULTS: Antileukinate-treated Tg mice had significantly decreased pulmonary inflammation and oxidative stress compared to Antileukinate-treated WT mice (p < 0.05) or Antileukinate-non-treated Tg mice (p < 0.05). CONCLUSION: Combined strategy of EC-SOD and neutrophil influx blockade may have a therapeutic benefit in protecting the lung against acute hyperoxic injury.


Subject(s)
Hyperoxia/enzymology , Lung Injury/enzymology , Neutrophils/enzymology , Oligopeptides/therapeutic use , Superoxide Dismutase/biosynthesis , Animals , Animals, Newborn , Gene Expression Regulation, Enzymologic , Humans , Hyperoxia/genetics , Hyperoxia/prevention & control , Lung Injury/genetics , Lung Injury/prevention & control , Mice , Mice, Transgenic , Neutrophils/drug effects , Oligopeptides/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/genetics , Superoxide Dismutase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...