Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(9): 9454-9464, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31919817

ABSTRACT

Climate change has become a threatening issue for major field crops of Pakistan, especially rice. A 2 years' (2014 and 2015) field trial was conducted on fine, coarse, and hybrid rice at Research Area, Department of Agronomy, University of Agriculture, Faisalabad following the split-plot design. Data of growth, yield, and yield components were collected to calibrate and evaluate the CERES-Rice model under Decision Support System for Agro-technology Transfer (DSSAT). Two cultivars of each type of fine, coarse, and hybrid rice were transplanted with interval of fortnight from May to September during 2014 and 2015. The model was calibrated with non-stressed sowing data during the year 2014 and evaluated with the data of 2015. Climate change scenarios were generated for mid-century (2040-2069) under representative concentration pathway (RCP8.5) using different general circulation models (GCMs) (baseline, cool dry, hot dry, cool wet, hot wet, and middle) were using different General Circulation Models (GCMs). CERES-Rice calibration and evaluation results were quite good to simulate impacts of climate change and to formulate adaptations during 2040-2069 (mid-century). Simulations of all GCMs showed an average increase of 3 °C in average temperature as compared to baseline (1980-2010). Likewise, there would be an average increase of 107.6 mm in rainfall than baseline. The future rise in temperature will reduced the paddy yield by 10.33% in fine, 18-54% in coarse and 24-64% in hybrid rice for mid-century under RCP8.5. To nullified deleterious effects of climate change, some agronomic and genetics adaptation strategies were evaluated with CERES-rice during mid-century. Paddy yield of fine rice was increased by 15% in cool dry and 5% in hot dry GCM. Paddy yield of coarse rice was improved by 15% and 9% under cool dry and hot dry climatic conditions, respectively, with adaptations. For hybrid rice, paddy yield was enhanced by 15% and 0.3% with cool wet and hot dry climatic conditions, respectively. Hot dry climatic conditions were the most threatening for rice crop in rice producing areas of Punjab, Pakistan.


Subject(s)
Climate Change , Oryza , Acclimatization , Agriculture , Pakistan , Temperature
2.
Sci Rep ; 8(1): 10489, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29980732

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

3.
Sci Rep ; 8(1): 7953, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29785043

ABSTRACT

Seed nutrients reserves have direct relationship with seed functional traits and influence offspring performance. Effects of plant density, foliage boron (B) nutrition and mepiquat chloride (MC) growth regulation on seed nutrients reserves, seed mass and production, and emergence and offspring growth traits of cotton were studied in two years field experiment. Seed nutrients reserves and seed mass were decreased at higher maternal plant density relative to lower plant density with concomitant decrease in emergence and offspring seedling growth. However, maternal foliage B nutrition and MC growth regulation enhanced seed nutrients reserves, seed mass, emergence and offspring seedling growth performance. There was a significant positive relationship between seed mass and seed nutrients reserves indicating that changes in nutrient availability/uptake in response to maternal ecological factors determine variation in seed functional traits. Nonetheless, seed mass was positively correlated with emergence percentage and negatively with emergence timing. Furthermore, variation in offspring seedling growth traits with seed mass indicated the significance of initial seed nutrients reserves for early seedling vigour and establishment. In conclusion, lower maternal plant density, B nutrition and MC growth regulation ensued in higher emergence and offspring seedling growth of cotton because of higher seed nutrient reserves and seed mass.


Subject(s)
Boron/metabolism , Germination , Gossypium/physiology , Nutrients/metabolism , Seedlings/growth & development , Seeds/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...