Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Int J Anal Chem ; 2023: 9625588, 2023.
Article in English | MEDLINE | ID: mdl-37810910

ABSTRACT

A topological index is a real number that is obtained from a chemical graph's structure. Determining the physiochemical and biological characteristics of a variety of medications is useful since it more accurately represents the theoretical characteristics of organic molecules. This is accomplished using degree-based topological indices. The QSPR research has improved the structural understanding of the physiochemical properties of fungicides. Thirteen fungicides are examined for some of their physiochemical properties, and a QSPR model is built using nine of the drugs' topological indices. Here, we examine the degree to which the topological indices and physiochemical attributes are connected. To do this, we create networks connecting each of the topological indices to the properties of fungicides and computationally construct topological indices of the drugs mentioned above. According to this QSPR model, the melting point, boiling point, flash point, complexity, surface tension, etc. of fungicides are strongly connected. It was discovered that the topological indices (TIs) applied to the fungicides more accurately represent their theoretical features and show a strong correlation with their physical attributes.

2.
Comb Chem High Throughput Screen ; 25(3): 500-509, 2022.
Article in English | MEDLINE | ID: mdl-33297913

ABSTRACT

AIMS AND OBJECTIVE: A fullerene graph is a mathematical model of a fullerene molecule. A fullerene molecule, or simply a fullerene, is a polyhedral molecule made entirely of carbon atoms other than graphite and diamond. Chemical graph theory is a combination of chemistry and graph theory, where theoretical graph concepts are used to study the physical properties of mathematically modeled chemical compounds. Graph labeling is a vital area of graph theory that has application not only within mathematics but also in computer science, coding theory, medicine, communication networking, chemistry, among other fields. For example, in chemistry, vertex labeling is being used in the constitution of valence isomers and transition labeling to study chemical reaction networks Method: In terms of graphs, vertices represent atoms while edges stand for bonds between the atoms. By tvs (tes) we mean the least positive integer for which a graph has a vertex (edge) irregular total labeling such that no two vertices (edges) have the same weights. A (3,6)-fullerene graph is a non-classical fullerene whose faces are triangles and hexagons Results: Here, we study the total vertex (edge) irregularity strength of an arbitrary disjoint union of (3,6)-fullerene graphs and provide their exact values. CONCLUSION: The lower bound for tvs (tes) depends on the number of vertices. Minimum and maximum degree of a graph exist in literature, while to get different weights, one can use sufficiently large numbers, but it is of no interest. Here, by proving that the lower bound is the upper bound, we close the case for (3,6)-fullerene graphs.


Subject(s)
Fullerenes , Carbon
3.
J Anal Methods Chem ; 2020: 9057815, 2020.
Article in English | MEDLINE | ID: mdl-32309011

ABSTRACT

Counting polynomials are important graph invariants whose coefficients and exponents are related to different properties of chemical graphs. Three closely related polynomials, i.e., Omega, Sadhana, and PI polynomials, dependent upon the equidistant edges and nonequidistant edges of graphs, are studied for quasi-hexagonal benzenoid chains. Analytical closed expressions for these polynomials are derived. Moreover, relation between Padmakar-Ivan (PI) index of quasi-hexagonal chain and that of corresponding linear chain is also established.

SELECTION OF CITATIONS
SEARCH DETAIL
...