Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Fertil Steril ; 16(4): 268-274, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36273312

ABSTRACT

BACKGROUND: Overweight and obesity are associated with cardiometabolic risk in polycystic ovary syndrome (PCOS). Lifestyle adjustment, such as increasing physical activity, is a first-line strategy to treat PCOS. The current study aims to compare and examine the effect of high intensity intermittent training (HIIT) and combined (COM) training on some anthropometric indices and aerobic performance in PCOS females. MATERIALS AND METHODS: This randomized controlled clinical trial was conducted on 45 women with PCOS divided into three groups receiving HIIT (n=15), COM interventions (n=15) or control group (n=15) for eight weeks. Some anthropometric indices factors including weight, body mass index (BMI), waist to hip ratio (WHR), body fat percent (FP), and visceral adipose tissue (VAT) as well as VO2max were measured at the baseline at the eighth week. Data were analyzed by one-way ANOVA test. Tukey post hoc tests were used to compare the pair differences. RESULTS: After eight-week intervention, weight, BMI, WHR, FP, and VAT decreased significantly in both groups of COM and HIIT (P<0.05) relative to the control group. There were no differences between HIIT group and COM group in terms of these variables (P>0.05). VO2max increased significantly after COM and HIIT interventions relative to the control group (P=0.001); however, HIIT was statically more effective than COM (P=0.011). CONCLUSION: The current study revealed that both HIIT and COM trainings could be beneficial in improving some anthropometric indices in addition to aerobic capacity, although HIIT was more effective on aerobic performance (registration number: IRCT20130812014333N143).

2.
Environ Sci Pollut Res Int ; 29(10): 15040-15056, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34622410

ABSTRACT

In this research, porous adsorbents of hypercrosslinked microporous polymer based on carbazole networks (HCP-CN) were synthesized for Pb(II) elimination from wastewaters. The results demonstrated that the extreme HCP-CN adsorbents utilization in wastewater treatment could remove more than 99.88% of Pb (II) ions. Furthermore, the two consumed adsorbents similarly indicated rapid adsorption kinetics, and it merely took a while to achieve adsorption equilibrium. These characteristics showed that HCP-CN adsorbent was an outstanding candidate for Pb(II) elimination from wastewater. Besides, the thermodynamic characteristics involving Gibbs free energy change (∆G0), entropy change (∆S0), and enthalpy change (∆H0) of the adsorption procedure were evaluated, and the results affirmed that the adsorption process was exothermic and spontaneous. In addition, response surface methodology (RSM) as a statistical investigation was used to optimize adsorption factors to obtain maximum adsorption capacity and investigate the interactive effect of parameters using central composite design (CCD). Optimum conditions obtained by RSM for maximum adsorption capacity of 26.02 mg/g are 35 °C, 40 mg/L, 11, 60 min, and 99.88 for temperature, initial concentration, pH, time, and removal percent, respectively. In the kinetic modeling study, the second-order model was selected as the best model. The values R2 at temperatures 35 °C, 40 °C, and 55 °C are 0.997, 0.9997, and 0.998, respectively. In the isotherm modeling, Hill model with a value R2 of 0.9766 has a superior precision compared to the other isotherm models. Also, the values of ΔH and ΔS at Pb(II) concentration of 60 mg/L are 122.622 kJ/mol and 0.463 kJ/mole K, respectively.


Subject(s)
Lead , Water Pollutants, Chemical , Adsorption , Carbazoles , Hydrogen-Ion Concentration , Ions , Kinetics , Polymers , Solutions , Thermodynamics
3.
Int J Vitam Nutr Res ; 91(5-6): 507-512, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32400317

ABSTRACT

Physical exercise increases free radicals production; antioxidant supplementation may improve the muscle fiber's ability to scavenge ROS and protect muscles against exercise-induced oxidative damage. This study was designed to examine the effects of all-trans resveratrol supplementation as an antioxidant to mediate anti-oxidation and lipid per-oxidation responses to exercise in male Wistar rats. Sixty-four male Wistar rats were randomly divided into four equal number (n = 16) including training + supplement (TS), training (T), supplement (S) and control (C) group. The rats in TS and S groups received a dose of 10 mg/kg resveratrol per day via gavage. The training groups ran on a rodent treadmill 5 times per week at the speed of 10 m/min for 10 min; the speed gradually increased to 30 m/min for 60 minutes at the end of 12th week. The acute phase of exercise protocol included a speed of 25 m/min set to an inclination of 10° to the exhaustion point. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activity, non-enzymatic antioxidants bilirubin, uric acid, lipid peroxidation levels (MDA) and the total antioxidant capacity (TAC) were measured after the exercise termination. The data were analyzed by using one-way ANOVA. The result showed that endurance training caused a significant increase in MDA level [4.5 ± 0.75 (C group) vs. 5.9 ± 0.41 nmol/l (T group)] whereas it decreased the total antioxidant capacity [8.5 ± 1.35 (C group) vs. 7.1 ± 0.55 mmol/l (T group)] (p = 0.001). In addition, GPx and CAT decreased but not significantly (p > 0.05). The training and t-resveratrol supplementation had no significant effect on the acute response of all variables except MDA [4.3 ± 1.4 (C group) vs. 4.0 ± 0.90 nmol/l (TS group)] (p = 0.001) and TAC [8.5 ± 0.90 (C group) vs. 6.6 ± 0.80 mmol/l (TS group)] (p = 0.004). It was concluded that resveratrol supplementation may prevent exercise-induced oxidative stress by preventing lipid peroxidation.


Subject(s)
Physical Conditioning, Animal , Animals , Antioxidants , Catalase/metabolism , Dietary Supplements , Glutathione Peroxidase/metabolism , Lipid Peroxidation , Male , Oxidative Stress , Rats , Rats, Wistar , Resveratrol , Superoxide Dismutase/metabolism
4.
ACS Omega ; 5(15): 8432-8448, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32337405

ABSTRACT

The present work evaluates and optimizes CO2 absorption in a bubble column for the Pz-H2O-CO2 system. We analyzed the impact of the different operating conditions on the hydrodynamic and mass-transfer performance. For the optimization of the process, variable conditions were used in the multivariate statistical method of response surface methodology. The central composite design is used to characterize the operating condition to fit the models by the least-squares method. The experimental data were fitted to quadratic equations using multiple regressions and analyzed using analysis of variance (ANOVA). An approved experiment was carried out to analyze the correctness of the optimization method, and a maximum CO2 removal efficiency of 97.9%, an absorption rate of 3.12 g/min, an N CO2 of 0.0164 mol/m2·s, and a CO2 loading of 0.258 mol/mol were obtained under the optimized conditions. Our results suggest that Pz concentration, solution flow rate, CO2 flow rate, and speed of stirrer were obtained to be 0.162 M, 0.502 l/h, 2.199 l/min, and 68.89 rpm, respectively, based on the optimal conditions. The p-value for all dependent variables was less than 0.05, and that points that all three models were remarkable. In addition, the experiment values acquired for the CO2 capture were found to agree satisfactorily with the model values (R 2 = 0.944-0.999).

5.
ACS Appl Mater Interfaces ; 11(16): 15060-15070, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30943002

ABSTRACT

The aim of this study is to examine the effect of the addition of aluminum fumarate (AlFu) nanoparticles on the properties of poly(ether sulfone) (PES) membranes, where the AlFu nanoparticles were synthesized as the nanofillers with the metal-organic framework and their structure was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FESEM) analyses. Subsequently, PES/AlFu mixed-matrix membranes (MMMs) were fabricated in different weight percentages of nanofiller through the phase inversion method and the membrane characterization was accomplished by FTIR, XRD, FESEM, transmission electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, and elemental mapping analyses. The effect of the addition of nanoparticles on the membrane properties was investigated by measuring the membrane hydrophilicity, pure water flux, solute rejection, and fouling resistance using a dead-end cell under constant pressure and bovine serum albumin as a foulant. The molecular weight cutoff (MWCO) of MMMs was measured by the rejection of poly(ethylene glycol) in various molecular weights, and the membrane surface roughness, porosity, and mean pore radius were calculated. The results showed that AlFu nanoparticles increased the hydrophilicity and porosity of the neat PES membranes and consequently increased the water permeability such that MMM including 0.75 wt % of AlFu possessed the maximum porosity (62.2%), mean pore radius (10.2 nm), and MWCO (154 kDa). Furthermore, this membrane exhibits a superlative flux recovery and minimal total resistance in the antifouling properties examinations.

6.
Water Sci Technol ; 77(5-6): 1213-1221, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29528309

ABSTRACT

The purpose of this study was to investigate the removal of Fast Green FCF dye from aqueous solutions using Flower Gel in a batch adsorption process. The effect of different parameters such as pH, contact time, adsorbent dosage, stirrer speed and temperature were studied, and various isotherms including Langmuir, Freundlich and Tempkin were applied. The adsorbent characteristics were determined by microscopic analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction and ultraviolet-visible (UV-vis) spectrophotometry. The results showed that the equilibrium experimental data fitted well to the Langmuir isotherm and the maximum adsorption capacity for this adsorbent was 58.82 mg/g. The adsorption kinetic data followed the pseudo-second-order kinetic model and the thermodynamic parameters of the adsorption, such as Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°), showed that the Fast Green FCF adsorption process by Flower Gel was spontaneous and exothermic in nature.


Subject(s)
Lissamine Green Dyes/chemistry , Waste Disposal, Fluid/methods , Water Purification , Water/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions , Spectroscopy, Fourier Transform Infrared , Temperature , Thermodynamics , Water Pollutants, Chemical/chemistry , X-Ray Diffraction
7.
Bone ; 90: 90-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27292653

ABSTRACT

There is controversy about whether or not body parameters affect hip fracture in men and women in the same way. In addition, although bone mineral density (BMD) is currently the most important single discriminator of hip fracture, it is unclear if BMD alone is equally effective for men and women. The objective of this study was to quantify and compare the associations of hip fracture risk with BMD and body parameters in men and women using our recently developed two-level biomechanical model that combines a whole-body dynamics model with a proximal-femur finite element model. Sideways fall induced impact force of 130 Chinese clinical cases, including 50 males and 80 females, were determined by subject-specific dynamics modeling. Then, a DXA-based finite element model was used to simulate the femur bone under the fall-induced loading conditions and calculate the hip fracture risk. Body weight, body height, body mass index, trochanteric soft tissue thickness, and hip bone mineral density were determined for each subject and their associations with impact force and hip fracture risk were quantified. Results showed that the association between impact force and hip fracture risk was not strong enough in both men (r=-0.31,p<0.05) and women (r=0.42,p<0.001) to consider the force as a sole indicator of hip fracture risk. The correlation between hip BMD and hip fracture risk in men (r=-0.83,p<0.001) was notably stronger than that in women (r=-0.68,p<0.001). Increased body mass index was not a protective factor against hip fracture in men (r=-0.13,p>0.05), but it can be considered as a protective factor among women (r=-0.28,p<0.05). In contrast to men, trochanteric soft tissue thickness can be considered as a protective factor against hip fracture in women (r=-0.50,p<0.001). This study suggested that the biomechanical risk/protective factors for hip fracture are sex-specific. Therefore, the effect of body parameters should be considered differently for men and women in hip fracture risk assessment tools. These findings support further exploration of sex-specific preventive and protective measurements to reduce the incidence of hip fractures.


Subject(s)
Absorptiometry, Photon , Hip Fractures/epidemiology , Hip Fractures/physiopathology , Sex Characteristics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Anthropometry , Biomechanical Phenomena , Body Height , Body Mass Index , Body Weight , Bone Density , Female , Hip Fractures/diagnostic imaging , Hip Fractures/pathology , Humans , Male , Middle Aged , Models, Biological , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL