Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mini Rev Med Chem ; 21(15): 2187-2201, 2021.
Article in English | MEDLINE | ID: mdl-33459233

ABSTRACT

P-Coumaric acid (p-CA) is a hydroxycinnamic acid, an organic compound that is a hydroxyl derivative of cinnamic acid. P-CA is the most abundant isomer in nature and can be found in a wide variety of edible plants such as fungi, peanuts, navy beans, tomatoes, carrots, basil, and garlic. Recently, the therapeutic properties of p-CA have received a great deal of attention from scientific society. Here, we described the medicinal effects of p-CA on various pathological conditions. This review was performed via evaluating PubMed reported studies from January 2010 to January 2020. Also, reference lists were checked to find additional studies. All intermediation or complementarity of animal models, case-control and cohort studies, in vitro studies, and controlled trials (CTs) on p-CA were acceptable. However plant extract studies without indication of main active substances were excluded due to the considerable diversities and heterogeneities. According to recent evidence regarding the beneficial effects of p-CA, numerous diseases such as nephropathies, cardiovascular diseases, neuroinflammatory diseases, liver diseases, cancers, and some metabolic disorders could potentially be controlled by this natural herb. Interestingly, autophagy is a novel molecular mechanism involved in the crosstalk between classic effects of p-CA and introduces alternative therapeutic pathways for this compound. Much work remains in clarifying the main therapeutic properties among the various p-CA effects; these will be the subject of forthcoming work, resulting in presenting further mechanism of action.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Coumaric Acids/pharmacology , Coumaric Acids/therapeutic use , Animals , Humans
2.
J Cell Biochem ; 121(2): 1169-1181, 2020 02.
Article in English | MEDLINE | ID: mdl-31464024

ABSTRACT

Human-induced pluripotent stem cells-derived hepatocyte-like cells (hiPSCs-HLCs) holds considerable promise for future clinical personalized therapy of liver disease. However, the low engraftment of these cells in the damaged liver microenvironment is still an obstacle for potential application. In this study, we explored the effectiveness of decellularized amniotic membrane (dAM) matrices for culturing of iPSCs and promoting their differentiation into HLCs. The DNA content assay and histological evaluation indicated that cellular and nuclear residues were efficiently eliminated and the AM extracellular matrix component was maintained during decelluarization. DAM matrices were developed as three-dimensional scaffolds and hiPSCs were seeded into these scaffolds in defined induction media. In dAM scaffolds, hiPSCs-HLCs gradually took a typical shape of hepatocytes (polygonal morphology). HiPSCs-HLCs that were cultured into dAM scaffolds showed a higher level of hepatic markers than those cultured in tissue culture plates (TCPs). Moreover, functional activities in term of albumin and urea synthesis and CYP3A activity were significantly higher in dAM scaffolds than TCPs over the same differentiation period. Thus, based on our results, dAM scaffold might have a considerable potential in liver tissue engineering, because it can improve hepatic differentiation of hiPSCs which exhibited higher level of the hepatic marker and more stable metabolic functions.


Subject(s)
Amnion/cytology , Cell Differentiation , Extracellular Matrix/chemistry , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Tissue Scaffolds/chemistry , Amnion/metabolism , Biomarkers/metabolism , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Tissue Engineering
3.
J Cell Physiol ; 235(5): 4239-4246, 2020 05.
Article in English | MEDLINE | ID: mdl-31613005

ABSTRACT

Diabetes is one of the most common diseases in the world that is chronic, progressive, and costly, and causes many complications. Common drug therapies are not able to cure it, and pancreas transplantation is not responsive to the high number of patients. The production of the insulin producing cells (IPCs) from the stem cells in the laboratory and their transplantation to the patient's body is one of the most promising new approaches. In this study, the differentiation potential of the induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) into IPCs was compared to each other while cultured on poly(lactic-co-glycolic) acid (PLGA)/polyethylene glycol (PEG) nanofibrous scaffold as a 3D substrate and tissue culture polystyrene (TCPS) as a 2D substrate. Although the expression level of the insulin, Glut2 and pdx-1 genes in stem cells cultured on 3D substrate was significantly higher than the stem cells cultured on 2D substrate, the highest expression level of these genes was detected in the iPSCs cultured on PLGA-PEG. Insulin and C-peptide secretions from differentiated cells were also investigated and the results showed that secretions in cultured iPSCs on the PLGA-PEG were significantly higher than cultured iPSCs on the TCPS and cultured MSCs on both PLGA-PEG and TCPS. In addition, insulin protein was also expressed in the cultured iPSCs on the PLGA-PEG significantly higher than cultured MSCs on the PLGA-PEG. It can be concluded that differentiation potential of iPSCs into IPCs is significantly higher than human MSCs at both 2D and 3D culture systems.


Subject(s)
Cell Culture Techniques/instrumentation , Cell Differentiation/physiology , Induced Pluripotent Stem Cells/physiology , Insulin/metabolism , Mesenchymal Stem Cells/physiology , C-Peptide/metabolism , Cell Culture Techniques/methods , Humans , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods
4.
Gene ; 720: 144096, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31476405

ABSTRACT

Biologically active materials and polymeric materials used in tissue engineering have been one of the most attractive research areas in the past decades, especially the use of easily accessible materials from the patients that reduces or eliminates any patient's immune response. In this study, electrospun nanofibrous scaffolds were fabricated by using polyvinyl-alcohol (PVA), chitosan and hydroxyapatite (HA) polymers and platelet-rich plasma (PRP) as a bioactive substance isolated from human blood. Fabricated scaffold's structure and cytotoxicity were evaluated using scanning electron microscope and MTT assays. Scaffolds osteoinductivity was investigated by osteogenic differentiation of the mesenchymal stem cells (MSCs) at the in vitro level and then its osteoconductivity was examined by implanting at the critical-sized rat calvarial defect. The in vitro results showed that scaffolds have a good structure and good biocompatibility. Alkaline phosphatase activity, calcium content and gene expression assays were also demonstrated that their highest amount was detected in MSCs-seeded PVA-chitosan-HA(PRP) scaffold. For this reason, this scaffold alone and along with the MSCs was implanted to the animal defects. The in vivo results demonstrated that in the animals implanted with PVA-chitosan-HA(PRP), the defect was repaired to a good extent, but in those animals that received MSCs-seeded PVA-chitosan-HA(PRP), the defects was almost filled. It can be concluded that, PVA-chitosan-HA(PRP) alone or when stem cells cultured on them, has a great potential to use as an effective bone implant.


Subject(s)
Cell Differentiation , Nanofibers/chemistry , Osteogenesis , Plastic Surgery Procedures , Platelet-Rich Plasma/chemistry , Skull/surgery , Animals , Cells, Cultured , Chitosan/chemistry , Durapatite/chemistry , Male , Mesenchymal Stem Cells/cytology , Polyvinyl Alcohol/chemistry , Rats , Rats, Sprague-Dawley , Tissue Engineering , Tissue Scaffolds
5.
J Cell Biochem ; 120(10): 16750-16759, 2019 10.
Article in English | MEDLINE | ID: mdl-31081968

ABSTRACT

Bioactive scaffolds that can increase transplanted cell survival time at the defect site have a great promising potential to use clinically since tissue regeneration or secretions crucially depend on the transplanted cell survival. In this study embedded basic fibroblast growth factor (bFGF)-polycaprolactone-polyvinylidene fluoride (PCL-PVDF) hybrid was designed and fabricated by electrospinning as a bio-functional nanofibrous scaffold for bone tissue engineering. After morphological characterization of the PCL-PVDF (bFGF) scaffold, nanofibers biocompatibility was investigated by culturing of the human induced pluripotent stem cells (iPSCs). Then, the bone differentiation capacity of the iPSCs was evaluated when grown on the PCL-PVDF and PCL-PVDF (bFGF) scaffolds in comparison with culture plate as a control using evaluating of the common osteogenic markers. The viability assay displayed a significant increase in iPSCs survival rate when grown on the bFGF content scaffold. The highest alkaline phosphatase activity and mineralization were detected in the iPSCs while grown on the PCL-PVDF (bFGF) scaffolds. Obtained results from gene and protein expression were also demonstrated the higher osteoinductive property of the bFGF content scaffold compared with the scaffold without it. According to the results, the release of bFGF from PCL-PVDF nanofibers increased survival and proliferation rate of the iPSCs, which followed by an increase in its osteogenic differentiation potential. Taking together, PCL-PVDF (bFGF) nanofibrous scaffold demonstrated that can be noted as a promising candidate for treating the bone lesions by tissue engineering products.


Subject(s)
Fibroblast Growth Factor 2/pharmacology , Induced Pluripotent Stem Cells/cytology , Osteogenesis/drug effects , Polyesters/chemistry , Polyvinyls/chemistry , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Survival , Fibroblast Growth Factor 2/chemistry , Fractures, Bone/therapy , Humans , Mice , Nanocomposites/chemistry , Tissue Engineering/methods
6.
Gene ; 671: 50-57, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-29860065

ABSTRACT

Pancreatic differentiation of stem cells will aid treatment of patients with type I diabetes mellitus (T1DM). Synthetic biopolymers utilization provided extracellular matrix (ECM) and desired attributes in vitro to enhance conditions for stem cells proliferation, attachment and differentiation. A mixture of polycaprolactone and polyvinyl alcohol (PCL/PVA)-based scaffold, could establish an in vitro three-dimensional (3D) culture model. The objective of this study was investigation of the human induced pluripotent stem cells (hiPSCs) differentiation capacity to insulin-producing cells (IPCs) in 3D culture were compared with conventional culture (2D) groups evaluated at the mRNA and protein levels by quantitative PCR and immunofluorescence assay, respectively. The functionality of differentiated IPCs was assessed by C-peptide and insulin release in response to glucose stimulation test. Real-Time PCR results showed that iPSCs-IPCs expressed pancreas-specific transcription factors (Insulin, Pdx1, Glucagon, Glut2 and Ngn3). The expressions of these transcription factors in PCL/PVA scaffold were higher than 2D groups. In addition to IPCs specific markers were detected by immunochemistry. These cells in both groups secreted insulin and C-peptide in a glucose challenge test by ELISA showing in vitro maturation. The results of current study demonstrated that enhanced differentiation of IPCs from hiPSCs could be result of PCL/PVA nanofibrous scaffolds. In conclusion, this research could provide a new approach to beta-like cells replacement therapies and pancreatic tissue engineering for T1DM in the future.


Subject(s)
Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/cytology , Insulin/metabolism , Tissue Scaffolds/chemistry , Cell Adhesion , Cell Differentiation , Cell Proliferation , Cells, Cultured , Gene Expression , Genetic Markers , Humans , Induced Pluripotent Stem Cells/metabolism , Nanofibers/chemistry , Polyesters , Polyvinyl Alcohol , Tissue Engineering/methods , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...