Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Bioeng Biomech ; 17(3): 137-43, 2015.
Article in English | MEDLINE | ID: mdl-26686911

ABSTRACT

The aim of the present study was to evaluate the biomechanical (stroke rate, stroke length, and stroke index), anthropometrical (body height, body mass, body mass index, arm span, shoulders width, thigh, leg and upper arm lengths), and muscle architectural (muscle thickness, pennation angle, and fascicle length) parameters as predictors of 200-m front crawl swimming performance in young male swimmers. Twenty-two county level male swimmers (mean ±SD: age: 14.52 ± 0.77 years; body height: 173 ± 5 m; body mass: 60.5 ± 5.7 kg) performed a 200-m front crawl swimming test in a 25-m pool. Stepwise regression analysis revealed that biomechanical parameters (87%) characterized best 200-m front crawl swimming performance, followed by anthropometrical (82%) and muscle architectural (72%) parameters. Also, stroke length (R2 = 0.623), body height (R2 = 0.541), fascicle length of Triceps Brachii (R2 = 0.392) were the best single predictors that together explained 92% of the variability of the 200-m front crawl swimming performance in these swimmers. As a conclusion, with respect to higher performance prediction power of biomechanical parameters, technique should represent the core of the training program at these ages. In addition, these findings could be used for male young swimmers selection and talent identification.


Subject(s)
Athletes , Swimming/physiology , Adolescent , Biomechanical Phenomena , Humans , Image Processing, Computer-Assisted , Male , Multivariate Analysis , Muscles/anatomy & histology , Muscles/diagnostic imaging , Regression Analysis , Ultrasonography
2.
J Sports Sci Med ; 13(3): 550-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25177181

ABSTRACT

The purpose of this study was to investigate the relationship between 25-m sprint front crawl swimming performance and muscle fascicle length in young male swimmers. 23 swimmers were selected and divided into two groups according to their best records of 25-m sprint performance: 14.6-15.7 sec (S1, n = 11) and 15.8-17 sec (S2, n = 12). Muscle thickness and pennation angle of Biceps Brachii (BB; only muscle thickness), Triceps Brachii (TB), Vastus Lateralis (VL), Gastrocnemius Medialis (GM) and Lateralis (GL) muscles were measured by B-mode ultrasonography, and fascicle length was estimated. Although, there was no significant differences between groups in anthropometrical parameter as standing height, body mass, arm length, thigh length and leg length (p < 0.001), however, S1 significantly had a greater muscle thickness in VL, GL, and TB muscles (p < 0.05). Pennation angle only in TB was significantly smaller in S1 (p < 0.05). S1 in VL, GL, and TB muscles significantly had greater absolute fascicle length and in VL and TB muscles had relatively (relative to limb length) greater fascicle length (p < 0.05). Moreover, there was a significant relationship between sprint swimming time and absolute and relative fascicle length in VL (absolute: r = -0.49 and relative: r = -0.43, both p < 0.05) and GL (absolute: r = -0.47 and relative: r = -0.42, both p < 0.05). Potentially, it seems that fascicle geometry developed in muscles of faster young swimmers to help them to perform their high speed movement. Key PointsThis study investigated the relationship between muscle fascicle length and sprint front crawl performance in young male swimmers.It seems that young swimmers with faster front crawl sprint swimming performance trend to have smaller pennation angle and greater absolute and relative fascicle length (relative to limb length) in their locomotor muscles.Potentially, fascicle geometry developed in faster swimmers to help them to perform higher speed movement via higher output power, however, the adaptive response of fiber length follownig training is not well underestood.

SELECTION OF CITATIONS
SEARCH DETAIL
...