Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(32): 29281-29291, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37599937

ABSTRACT

Iron oxide (α-Fe2O3) was synthesized from red mud extract followed by hydrothermal reaction at 150 °C/6-24 h in the presence of NH4OH. The crystallinity of α-Fe2O3 increased with reaction time as confirmed by X-ray Diffraction, while Fourier transform infrared spectroscopy and Raman illustrate the symmetric stretching vibration of the Fe-O bond in α-Fe2O3. The X-ray photoelectron spectroscopic analysis shows O 1s spectra at 530.6, 531.2, and 532 eV, signifying the lattice oxygen in Fe-O, surface oxygen defects, and oxygen in adsorbed hydroxyl groups, respectively. The morphology of α-Fe2O3 nanoflakes was noticed from field emission scanning electron microscopy and transmission electron microscopy. The developed particles reveal the BET surface area in the range of 136-347 m2/g. The maximum As(V) adsorption capacity of 32-41 mg/g was obtained for adsorbent dose of 0.25 g/L. The arsenic level could be lowered down to 2-3 µg/L (<10 µg/L as per WHO's limit) with contaminated real water (64 µg/L) using 0.25 g/L of sample dose within 5 min of adsorption.

2.
ACS Omega ; 4(6): 10346, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31465019

ABSTRACT

[This corrects the article DOI: 10.1021/acsomega.8b01252.].

3.
ACS Omega ; 3(8): 9888-9898, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459117

ABSTRACT

In the presence of melamine and block copolymers, namely, F108, F127, and P123, nitrogen-doped nanoporous carbon nanospheroids (N@CNSs) were synthesized by the hydrothermal process. The F127-modified sample (CNF127) exhibits the maximum Brunauer-Emmett-Teller (BET) surface area of 773.4 m2/g with a pore volume of 0.877 cm3/g. The microstructural study reveals that nanospheroids of size 50-200 nm were aggregated together to form a chainlike structure for all triblock copolymer-modified samples. The X-ray photoelectron spectroscopy study shows the binding energies of 398.33 and 400.7 eV attributed to sp2 (C-N=C)- and sp3 (C-N)-hybridized nitrogen-bonded carbons, respectively. The synthesized N@CNS samples showed selective adsorption of organic dye methylene blue (MB) in the presence of methyl orange (MO) as well as Pb(II) ion removal from contaminated water. The adsorptions for MB and Pb(II) ions followed pseudo-first-order and pseudo-second-order kinetic models, respectively. The sample CNF127 showed the highest adsorption of 73 and 99.82 mg/g for MB and Pb(II) adsorptions, respectively. The adsorption capacity for MB of the copolymer-modified samples follows the order CNF127 > CNP123 > CNF108, which corroborated with the mesoporosity as well as nitrogen content of the corresponding samples. The maximum % adsorption of Pb(II) follows the order CNF127 (99.82%) > CNF108 (98.74%) > CNP123 (91.82%), and this trend is attributed to the BET surface area of the corresponding samples. This study demonstrates multicomponent removal of water pollutants, both organic dyes and inorganic toxic metal ions.

4.
Phys Chem Chem Phys ; 18(30): 20528-41, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27406648

ABSTRACT

Mesoporous cube shaped hematite (α-Fe2O3) particles were prepared using FeCl3 as an Fe(3+) precursor and 1-butyl-3-methylimidazolium bromide (ionic liquid) as a soft template in the presence of different alkali metal (lithium, sodium and potassium) acetates, under hydrothermal conditions at 150 °C/4 h followed by calcination at 350 °C. The formation of the α-Fe2O3 phase in the synthesized samples was confirmed by XRD, FTIR and Raman spectroscopy. Unlike K(+) ions, intercalation of Li(+) and Na(+) ions occurred in α-Fe2O3 crystal layers as evidenced by XRD and Raman spectroscopy. Electron microscopy (FESEM and TEM) images showed the formation of cube-like particles of different sizes in the presence of Li(+), Na(+) and K(+) ions. The mesoporosity of the products was confirmed by N2 adsorption-desorption studies, while their optical properties were analyzed by UV-DRS. Na(+) ion intercalated α-Fe2O3 microcubes showed improved coercivity (5.7 kOe) due to increased strain in crystals, and shape and magnetocrystalline anisotropy. Temperature dependent magnetization of the samples confirmed the existence of Morin temperature in the range of 199-260 K. Catalytic degradation of methylene blue (MB), a toxic water pollutant, was studied using the synthesized products via a heterogeneous photo-Fenton process. The degradation products were traced by electrospray ionization-mass spectrometry (ESI-MS). The α-Fe2O3 microcubes obtained in the presence of Na(+) ions exhibited a more efficient degradation of MB to non-toxic open chain products.

5.
Phys Chem Chem Phys ; 18(7): 5253-63, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26815335

ABSTRACT

A simple soft bi-templating process was used for the synthesis of mesoporous manganese oxide nanostructures using KMnO4 as a precursor and polyethylene glycol and cetyltrimethylammonium bromide as templates in the presence of benzaldehyde as an organic additive in alkaline media, followed by calcination at 400 °C. X-ray diffraction and Raman spectroscopic analysis of the calcined products confirmed the existence of stoichiometric (MnO2 and Mn5O8) and non-stoichiometric mixed phases (MnO2 + Mn5O8) of Mn oxides obtained by tuning the concentration of the additive and the synthesis time. The surface properties of the prepared Mn oxides were determined by X-ray photoelectron spectroscopy. The mesoporosity of the samples was confirmed by N2 adsorption-desorption. Different synthetic conditions resulted in the formation of different morphologies of the Mn oxides (α-MnO2, Mn5O8, and α-MnO2 + Mn5O8), such as nanoparticles, nanorods, and nanowires. The synthesized mesoporous Mn oxide nanostructures were used for the catalytic oxidation of the harmful air pollutant carbon monoxide. The Mn5O8 nanoparticles with the highest Brunauer-Emmett-Teller surface area and the non-stoichiometric manganese oxide (α-MnO2 + Mn5O8) nanorods with a higher Mn(3+) concentration had the best catalytic efficiency.

6.
Phys Chem Chem Phys ; 17(15): 10160-9, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25792483

ABSTRACT

Mesoporous self-assembled cobalt oxide (Co3O4) of different shapes was synthesized by a facile soft-chemical process using cobalt nitrate, oxalic acid and phosphoric acid in the presence of cationic templates, cetyltrimethylammonium bromide, 1-butyl-3-methylimidazolium bromide, and pyridinium bromide at 75 °C/2 h followed by calcination at 300 °C. The effect of cationic templates of the samples on the physico-chemical properties, and the photocatalytic efficiency for the degradation of Chicago Sky Blue 6B was studied. Pyridinium bromide and 1-butyl-3-methylimidazolium bromide facilitated formation of particles with different shaped morphology compared to cetyltrimethylammonium bromide. The rod-like particles having higher surface area exhibited higher photocatalytic performance.

7.
Dalton Trans ; 43(26): 10248-57, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24878520

ABSTRACT

Porous cobalt oxide (Co3O4) nanorod (50-100 nm) and nanosheet-like (70-100 nm) particles were synthesized by a facile hydrothermal method at 150 °C for 2-5 h and 12-24 h, respectively, using aqueous-based precursors like cobalt nitrate, urea and water in the absence of any templating agents followed by their calcination at 300 °C. Morphology and textural properties were tuned by changing the synthesis time at 150 °C. A 3D architecture of Co3O4 was formed by the self-assembly of nanostructured (nanorod and nanosheet) particles. The BET surface area, pore volume and pore diameter of the sample prepared at 150 °C for 5 h were 112 m(2) g(-1), 0.5 cm(3) g(-1) and 7.4 nm, respectively, and it exhibited the highest catalytic performance with a rate constant of 56.8 × 10(-3) min(-1) for the degradation of Chicago Sky Blue 6B, a carcinogenic azo dye used in the textile, paper and food industries. Rod-like particles with a mesoporous structure rendered a better catalytic efficiency than sheet-like particles having both microporous and mesoporous structures. An interrelationship amongst the morphology, textural properties and the catalytic efficiency of Co3O4 was established.

8.
J Colloid Interface Sci ; 297(1): 271-5, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16300783

ABSTRACT

We have synthesized surface modified ZnS nanoparticles of size 2-3 nm using non-ionic surfactant-stabilized reverse emulsions. The non-ionic surfactants in the Span series, i.e. sorbitan monolaurate (Span 20) and sorbitan monooleate (Span 80) of hydrophilic-lipophilic balance (HLB) values of 8.6 and 4.3, respectively, have been used for the stabilization of emulsions. The role of these surfactants in controlling the size and properties of the ZnS nanoparticles has been discussed. The triethylamine (TEA) has been proved to be the effective surface modifying (capping) agent for the preparation of free-standing ZnS nanoparticles. The Span 20 with the higher HLB value of 8.6 has been found to be highly suitable in synthesizing TEA-capped ZnS nanoparticles of smaller size and higher photophysical characteristics compared to that of the Span 80 of lower HLB value of 4.3. A mechanism for the formation of TEA-capped ZnS nanoparticles from the surfactant-stabilized reverse emulsions has been proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...