Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34832290

ABSTRACT

Various COx species formed upon the adsorption and oxidation of CO on palladium and silver single atoms supported on a model ceria nanoparticle (NP) have been studied using density functional calculations. For both metals M, the ceria-supported MCOx moieties are found to be stabilised in the order MCO < MCO2 < MCO3, similar to the trend for COx species adsorbed on M-free ceria NP. Nevertheless, the characteristics of the palladium and silver intermediates are different. Very weak CO adsorption and the small exothermicity of the CO to CO2 transformation are found for O4Pd site of the Pd/Ce21O42 model featuring a square-planar coordination of the Pd2+ cation. The removal of one O atom and formation of the O3Pd site resulted in a notable strengthening of CO adsorption and increased the exothermicity of the CO to CO2 reaction. For the analogous ceria models with atomic Ag instead of atomic Pd, these two energies became twice as small in magnitude and basically independent of the presence of an O vacancy near the Ag atom. CO2-species are strongly bound in palladium carboxylate complexes, whereas the CO2 molecule easily desorbs from oxide-supported AgCO2 moieties. Opposite to metal-free ceria particle, the formation of neither PdCO3 nor AgCO3 carbonate intermediates before CO2 desorption is predicted. Overall, CO oxidation is concluded to be more favourable at Ag centres atomically dispersed on ceria nanostructures than at the corresponding Pd centres. Calculated vibrational fingerprints of surface COx moieties allow us to distinguish between CO adsorption on bare ceria NP (blue frequency shifts) and ceria-supported metal atoms (red frequency shifts). However, discrimination between the CO2 and CO32- species anchored to M-containing and bare ceria particles based solely on vibrational spectroscopy seems problematic. This computational modelling study provides guidance for the knowledge-driven design of more efficient ceria-based single-atom catalysts for the environmentally important CO oxidation reaction.

2.
Phys Chem Chem Phys ; 14(17): 5879-90, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22353996

ABSTRACT

"Reverse" spillover of hydrogen from hydroxyl groups of the support onto supported transition metal clusters, forming multiply hydrogenated metal species, is an essential aspect of various catalytic systems which comprise small, highly active transition metal particles on a support with a high surface area. We review and analyze the results of our computational model studies related to reverse hydrogen spillover, interpreting available structural and spectral data for the supported species and examining the relationship between metal-support and metal-hydrogen interactions. On the examples of small clusters of late transition metals, adsorbed in zeolite cavities, we showed with computational model studies that reverse spillover of hydrogen is energetically favorable for late transition metals, except for Au. This preference is crucial for the chemical reactivity of such bifunctional catalytic systems because both functions, of metal species and of acidic sites, are strongly modified, in some cases even suppressed - due to partial oxidation of the metal cluster and the conversion of protons from acidic hydroxyl groups to hydride ligands of the metal moiety. Modeling multiple hydrogen adsorption on metal clusters allowed us to quantify how (i) the support affects the adsorption capacity of the clusters and (ii) structure and oxidation state of the metal moiety changes upon adsorption. In all models of neutral systems we found that the metal atoms are partially positively charged, compensated by a negative charge of the adsorbed hydrogen ligands and of the support. In a case study we demonstrated with calculated thermodynamic parameters how to predict the average hydrogen coverage of the transition metal cluster at a given temperature and hydrogen pressure.

3.
J Chem Theory Comput ; 3(6): 2290-300, 2007 Nov.
Article in English | MEDLINE | ID: mdl-26636220

ABSTRACT

We present an improved scheme for constructing the border region within a hybrid quantum mechanics/molecular mechanics (QM/MM) embedded cluster approach for zeolites and covalent oxides that ensures proper modeling of adsorption complexes with QM regions of moderate size. The procedure employs a flexible orbital basis set on monovalent oxygen pseudoatoms at the boundary of the QM cluster and introduces a pseudopotential description without explicit representation of valence electrons for their immediate Si neighbors in the MM region. This novel QM/MM border scheme, implemented in the elastic polarizable environment method for polar covalent materials (covEPE), provides an accurate description of the local structure of zeolites and other silica based materials. We assessed the performance of the novel border scheme by comparing calculated and experimental results for structures, vibrational frequencies, and binding energies of CO adsorption complexes at bridging OH groups in zeolites with FAU and MFI structures. In addition, when modeling zeolite-supported metal clusters, the new approach implies considerably reduced corrections due to the basis set superposition error, compared to our previous scheme for treating the border region of the QM partition [J. Phys. Chem. B 2003, 107, 2228].

4.
Langmuir ; 22(5): 2141-5, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16489800

ABSTRACT

As a first step toward modeling the interaction of dissolved actinide contaminants with mineral surfaces, we studied low-coverage adsorption of aqueous uranyl, UO2(2+), on the hydroxylated alpha-Al2O3(0001) surface. We carried out density functional periodic slab model calculations and modeled solvation effects by explicit aqua ligands. We explored the formation of both inner- and outer-sphere complexes and estimated the corresponding adsorption energies. Effects of solvation were accounted for by explicit consideration of the first hydration shell of uranyl and by means of a posteriori corrections for long-range solvent effect. With energetics described at the GGA-PW91 level and under the assumption of a fully protonated ideal surface, we predict a weakly bound outer-sphere adsorption complex.

5.
J Chem Phys ; 124(4): 044708, 2006 Jan 28.
Article in English | MEDLINE | ID: mdl-16460201

ABSTRACT

We report g tensors of surface color centers, so-called F(s) (+) centers, of MgO calculated with two density-functional approaches using accurately embedded cluster models. In line with recent UHV measurements on single-crystalline MgO film, we determined only small g-tensor anisotropies and negative shifts Deltag identical with g-g(e) for all F(s) (+) sites considered, namely, (001)-terrace, step, edge, and corner sites. The g values are very sensitive to the local structure of the defect: relaxation reverses the sign of Deltag. However, accounting for the spin-orbit interaction either self-consistently or perturbatively yields very similar results. In addition to the values of the tensor components, their direction with respect to the surface was determined. In contrast to edges, significant deviations from ideal C(2v) symmetry were found for F(s) (+) centers at steps. Recent data on single-crystalline thin films are reevaluated in the light of these results.

6.
J Phys Chem B ; 109(51): 24304-10, 2005 Dec 29.
Article in English | MEDLINE | ID: mdl-16375428

ABSTRACT

We studied the preferential location of Ti centers in the framework of the Ti-containing MFI zeolite TS-1 using a hybrid DFT/MM embedding method developed recently. This "covalent elastic polarizable environment" (covEPE) cluster embedding allows a complete and self-consistent treatment of solid covalent systems such as zeolites. For the present study, we used a gradient-corrected density functional approach. The resulting structural features of both Si- and Ti-substituted forms of the zeolite framework fit well with available experimental information. The calculated substitution energy of Ti at the 12 crystallographically different tetrahedral sites of the MFI structure vary within 19 kJ/mol with T12 and T2 as most and least preferred sites, respectively. On the basis of these computational results and the preferential sites for Ti substitution reported from different experimental investigations, we concluded that the Ti distribution in the TS-1 framework is not governed by the thermodynamic stability of the pure material.

7.
J Am Chem Soc ; 127(33): 11652-60, 2005 Aug 24.
Article in English | MEDLINE | ID: mdl-16104741

ABSTRACT

Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d < 3d < 5d. Regarding the evolution of the binding energy along a period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.


Subject(s)
Elements , Magnesium Oxide/chemistry , Metals, Heavy/chemistry , Models, Theoretical
8.
J Chem Theory Comput ; 1(3): 459-71, 2005 May.
Article in English | MEDLINE | ID: mdl-26641513

ABSTRACT

We report the first computational study with a sophisticated quantum mechanics/molecular mechanics (QM/MM) technique that addresses the effect of the aluminum content on the properties of acidic zeolites. To account for both electrostatic and mechanical interaction between the QM cluster and its MM environment, we used cluster models embedded in the covalent variant of the elastic polarizable environment (covEPE) [Nasluzov, V. A.; Ivanova, E. A.; Shor, A. M.; Vayssilov, G. N.; Birkenheuer, U.; Rösch, N. J. Phys. Chem. B 2003, 107, 2228]. For the practical application of the covEPE method, it was necessary to develop a new force field for Al containing zeolites. Two types of zeolite materials, FAU and MFI, were employed as examples. We modeled the variation of the Al content both in the MM environment and in the QM cluster, and we studied pertinent properties of bridging OH groups of the zeolite frameworks, OH vibrational frequencies, and deprotonation energies. The computational results suggest that the local structure and the location of the OH groups exert a stronger effect than the variation of the Al content of the framework.

9.
Inorg Chem ; 35(9): 2504-2514, 1996 Apr 24.
Article in English | MEDLINE | ID: mdl-11666463

ABSTRACT

Photoelectron spectra, with photon energies varying from 18 to 120 eV, have been measured for Ni(eta(5)-C(5)H(5))(NO). Relative partial photoelectron cross sections and branching ratios have been evaluated for the first three valence ionization bands. He I and He II photoelectron spectra have been remeasured for Ni(eta(5)-C(5)H(5))(NO) and Ni(eta(5)-C(5)H(4)CH(3))(NO). In the latter case, the fine structure on the first band differs from that in the previously published spectrum. Density functional calculations have been carried out to determine the ionization potentials of the lowest lying states of Ni(eta(5)-C(5)H(5))(NO) as well as the corresponding photoionization cross sections and the resulting branching ratios using the LCGTO-DF and LDKL-DF methods, respectively. Both experimental and theoretical investigations lead to an ion state ordering (2)E(1) < (2)E(2) approximately (2)A(1)< (2)E(1) and an assignment of (2)E(1) states to the first and third bands with the (2)A(1) and (2)E(2) states comprising the second band. This differs from the original assignment in the literature, where the (2)A(1) ionization was assigned to a high-energy shoulder on the first band. The separation of this shoulder from the main band maximum of 0.23 eV (1850 +/- 81 cm(-)(1)) suggests that it may be caused by excitation of the NO stretching vibration in the ion. The neutral molecule has a NO stretch of 1832 cm(-)(1); the calculated energies for the neutral molecule and the cation are 1845 and 1911 cm(-)(1), respectively. Agreement between calculated and experimental ionization energies and good matching of the theoretical and measured branching ratios support the new assignment of the photoelectron spectrum.

SELECTION OF CITATIONS
SEARCH DETAIL
...