Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(18): 8532-8543, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31483137

ABSTRACT

Monoacylglycerol lipase (MAGL), a serine hydrolase extensively expressed throughout the brain, serves as a key gatekeeper regulating the tone of endocannabinoid signaling. Preclinically, inhibition of MAGL is known to provide therapeutic benefits for a number of neurological disorders. The availability of a MAGL-specific positron emission tomography (PET) ligand would considerably facilitate the development and clinical characterization of MAGL inhibitors via noninvasive and quantitative PET imaging. Herein, we report the identification of the potent and selective irreversible MAGL inhibitor 7 (PF-06809247) as a suitable radioligand lead, which upon radiolabeling was found to exhibit a high level of MAGL specificity; this enabled cross-species measurement of MAGL brain expression (Bmax), assessment of in vivo binding in the rat, and nonhuman primate PET imaging.


Subject(s)
Brain/diagnostic imaging , Monoacylglycerol Lipases/chemistry , Positron-Emission Tomography , Animals , Binding Sites , Brain/enzymology , Carbamates/pharmacology , Dogs , Drug Design , Endocannabinoids/metabolism , Enzyme Inhibitors/pharmacology , Humans , Ligands , Madin Darby Canine Kidney Cells , Magnetic Resonance Imaging , Rats , Rats, Sprague-Dawley , Solvents
2.
ACS Chem Biol ; 14(2): 192-197, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30702848

ABSTRACT

Clinical investigation of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 resulted in serious adverse neurological events. Structurally unrelated FAAH inhibitors tested in humans have not presented safety concerns, suggesting that BIA 10-2474 has off-target activities. A recent activity-based protein profiling (ABPP) study revealed that BIA 10-2474 and one of its major metabolites inhibit multiple members of the serine hydrolase class to which FAAH belongs. Here, we extend these studies by performing a proteome-wide analysis of covalent targets of BIA 10-2474 metabolites. Using alkynylated probes for click chemistry-ABPP in human cells, we show that des-methylated metabolites of BIA 10-2474 covalently modify the conserved catalytic cysteine in aldehyde dehydrogenases, including ALDH2, which has been implicated in protecting the brain from oxidative stress-related damage. These findings indicate that BIA 10-2474 and its metabolites have the potential to inhibit multiple mechanistically distinct enzyme classes involved in nervous system function.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Cyclic N-Oxides/pharmacology , Enzyme Inhibitors/pharmacology , Pyridines/pharmacology , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Area Under Curve , Cell Line, Tumor , Chromatography, Liquid , Click Chemistry , Cyclic N-Oxides/metabolism , Cyclic N-Oxides/pharmacokinetics , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , HEK293 Cells , Humans , Mass Spectrometry , Pyridines/metabolism , Pyridines/pharmacokinetics
3.
J Med Chem ; 61(7): 3008-3026, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29498843

ABSTRACT

Monoacylglycerol lipase (MAGL) inhibition provides a potential treatment approach to neuroinflammation through modulation of both the endocannabinoid pathway and arachidonoyl signaling in the central nervous system (CNS). Herein we report the discovery of compound 15 (PF-06795071), a potent and selective covalent MAGL inhibitor, featuring a novel trifluoromethyl glycol leaving group that confers significant physicochemical property improvements as compared with earlier inhibitor series with more lipophilic leaving groups. The design strategy focused on identifying an optimized leaving group that delivers MAGL potency, serine hydrolase selectivity, and CNS exposure while simultaneously reducing log  D, improving solubility, and minimizing chemical lability. Compound 15 achieves excellent CNS exposure, extended 2-AG elevation effect in vivo, and decreased brain inflammatory markers in response to an inflammatory challenge.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carbamates/chemical synthesis , Carbamates/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Neuritis/drug therapy , Amidohydrolases/antagonists & inhibitors , Animals , Arachidonic Acids/metabolism , Biomarkers , Brain Chemistry/drug effects , Dogs , Drug Design , Drug Discovery , Endocannabinoids/metabolism , Glycerides/metabolism , Humans , Macaca mulatta , Models, Molecular , Rats , Rats, Wistar , Structure-Activity Relationship
4.
J Med Chem ; 59(13): 6313-28, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27275946

ABSTRACT

It is hypothesized that selective muscarinic M1 subtype activation could be a strategy to provide cognitive benefits to schizophrenia and Alzheimer's disease patients while minimizing the cholinergic side effects observed with nonselective muscarinic orthosteric agonists. Selective activation of M1 with a positive allosteric modulator (PAM) has emerged as a new approach to achieve selective M1 activation. This manuscript describes the development of a series of M1-selective pyridone and pyridine amides and their key pharmacophores. Compound 38 (PF-06767832) is a high quality M1 selective PAM that has well-aligned physicochemical properties, good brain penetration and pharmacokinetic properties. Extensive safety profiling suggested that despite being devoid of mAChR M2/M3 subtype activity, compound 38 still carries gastrointestinal and cardiovascular side effects. These data provide strong evidence that M1 activation contributes to the cholinergic liabilities that were previously attributed to activation of the M2 and M3 receptors.


Subject(s)
Drug Discovery , Picolinic Acids/pharmacology , Receptor, Muscarinic M1/agonists , Thiazoles/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Male , Mice , Models, Molecular , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Rats , Receptor, Muscarinic M1/metabolism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
5.
Bioorg Med Chem Lett ; 26(2): 650-655, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26631313

ABSTRACT

Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies.


Subject(s)
Allosteric Regulation/drug effects , Amides/chemistry , Amides/pharmacology , Indoles/chemistry , Indoles/pharmacology , Receptor, Muscarinic M1/metabolism , Amides/pharmacokinetics , Animals , Drug Design , Humans , Hydrogen Bonding , Indoles/pharmacokinetics , Mice , Molecular Docking Simulation , Receptor, Muscarinic M1/agonists
6.
ACS Med Chem Lett ; 3(5): 433-5, 2012 May 10.
Article in English | MEDLINE | ID: mdl-24900489

ABSTRACT

When stable atropisomers are encountered by drug discovery teams, they can have important implications due to potential differences in their biological activity, pharmacokinetics, and toxicity. Knowledge of an atropisomer's activation parameters for interconversion is required to facilitate informed decisions on how to proceed. Herein, we communicate the development of a new method for the rapid measurement of atropisomer racemization kinetics utilizing segmented flow technology. This method leverages the speed, accuracy, low sample requirement, safety, and semiautomated nature of flow instrumentation to facilitate the acquisition of kinetics data required for experimentally probing atropisomer activation parameters. Measured kinetics data obtained for the atropo isomerization of AMPA antagonist CP-465021 using segmented flow and traditional thermal methods were compared to validate the method.

7.
Bioorg Med Chem Lett ; 14(17): 4511-4, 2004 Sep 06.
Article in English | MEDLINE | ID: mdl-15357982

ABSTRACT

The synthesis and nNOS and eNOS activity of 6-(4-(dimethylaminoalkyl)-/6-(4-(dimethylaminoalkoxy)-5-ethyl-2-methoxyphenyl)-pyridin-2-ylamines and 6-(4-(dimethylaminoalkyl)-/6-(4-(dimethylaminoalkoxy)-2,5-dimethoxyphenyl)-pyridin-2-ylamines 1-8 are described. These compounds are potent inhibitors of the human nNOS isoform.


Subject(s)
Amines/chemistry , Enzyme Inhibitors/chemistry , Nerve Tissue Proteins/antagonists & inhibitors , Nitric Oxide Synthase/antagonists & inhibitors , Pyridines/chemistry , Amines/pharmacology , Enzyme Inhibitors/pharmacology , Humans , Neural Inhibition/drug effects , Nitric Oxide Synthase Type I , Pyridines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...