Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836603

ABSTRACT

The therapeutic advantages of some platinum complexes as major anticancer chemotherapeutic agents and of nucleoside analogue-based compounds as essential antiviral/antitumor drugs are widely recognized. Red blood cells (RBCs) offer a potential new strategy for the targeted release of therapeutic agents due to their biocompatibility, which can protect loaded drugs from inactivation in the blood, thus improving biodistribution. In this study, we evaluated the feasibility of loading model nucleobase-containing Pt(II) complexes into human RBCs that were highly stabilized by four N-donors and susceptible to further modification for possible antitumor/antiviral applications. Specifically, platinum-based nucleoside derivatives [PtII(dien)(N7-Guo)]2+, [PtII(dien)(N7-dGuo)]2+, and [PtII(dien)(N7-dGTP)] (dien = diethylenetriamine; Guo = guanosine; dGuo = 2'-deoxy-guanosine; dGTP = 5'-(2'-deoxy)-guanosine-triphosphate) were investigated. These Pt(II) complexes were demonstrated to be stable species suitable for incorporation into RBCs. This result opens avenues for the possible incorporation of other metalated nucleobases analogues, with potential antitumor and/or antiviral activity, into RBCs.


Subject(s)
Antineoplastic Agents , Organoplatinum Compounds , Humans , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/metabolism , Tissue Distribution , Platinum , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Antiviral Agents/pharmacology , Erythrocytes/metabolism , Guanosine/metabolism
2.
Toxicol In Vitro ; 93: 105705, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37775061

ABSTRACT

Essential oils (EOs) are natural products that have gained wide interest due to their biological activities and anticancer properties through various mechanisms. The present study aimed to test the cytotoxicity of Thymus vulgaris L. (thyme) EO of Italian origin, rich in thymol (49.6%) and p-cymene (18.8%), towards the triple-negative breast cancer cell line MDA-MB-231 and to investigate the biochemical mechanisms underlying its antitumor activity. Thyme EO reduced cancer cell viability in a dose-dependent manner after 24 h treatment, with an IC50 value equal to 75.1 ± 15.2 µg/ml; simultaneously, the inhibition of cancer cell migration and colony formation capacity was evidenced. Thyme EO antiproliferative effects were related to the induction of apoptosis as demonstrated by the increased expression of the pro-apoptotic proteins Bax, cleaved caspase-3, phospho-p53, and SMAC/Diablo and by the reduction of the anti-apoptotic proteins Bcl-2, cIAP-1, cIAP-2, HIF-1α, survivin, and XIAP. Thyme EO administration led to the early formation of intracellular ROS, followed by the increment of MDA as an index of lipid peroxidation and by the decreased expression of the antioxidant enzymes catalase and PON2. The upregulation of Nrf2 mRNA expression and the strong induction of HO-1 sustained the activation of the Nrf2 pathway by thyme EO. These data showed that the EO from Thymus vulgaris L. might inhibit the malignant phenotype of MDA-MB-231, thus suggesting potential benefits against human triple-negative breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Oils, Volatile , Thymus Plant , Triple Negative Breast Neoplasms , Humans , Female , Thymus Plant/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , NF-E2-Related Factor 2 , Oils, Volatile/pharmacology , Apoptosis , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor
3.
J Cancer Res Clin Oncol ; 149(12): 10085-10097, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37261527

ABSTRACT

PURPOSE: Gastric cancers (GC) display histological and molecular differences. This heterogeneity has limited the development of new therapeutic strategies which requires the identification of the molecular players involved in GC pathogenesis and the investigation of their responsiveness to drugs. Several proteasome subunits have been identified as prognostic markers in GC and their role studied by gene knockdown. However, proteasomes are multi-subunit protein complexes co-existing in multiple forms with distinct activity/specificity and ability to change in response to inhibitors. Information on the role of different proteasome particles in cancer and their relevance as therapeutic targets is limited. METHODS: Based on this evidence, subunit assembly into proteasome complexes and activity were investigated by native PAGE followed by immunoblotting, and by using fluorogenic substrates, respectively. RESULTS: Here we show that GC cell lines with epithelial and/or diffuse Lauren's histotype express different levels of immunoproteasome subunits and equal amounts of constitutive counterparts. Immunoproteasome subunits were highly expressed and preferentially assembled into 19S capped complexes in diffuse-type cells, where most of the activity was catalyzed by the 26S and 30S particles. In epithelial cells, activity appeared equally distributed between 19S- and 11S-capped proteolytic particles. This proteasome pattern was associated with higher resistance of diffuse-type cells to proteasome inhibition. Immunoproteasome inhibition by ONX 0914 did not influence cell viability but affected metastatic cell migration. CONCLUSIONS: These results suggest that pharmacological inhibition of the immunoproteasome may be useful in treating metastatic gastric cancers.


Subject(s)
Proteasome Endopeptidase Complex , Stomach Neoplasms , Humans , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Cytoplasm/metabolism , Cell Line
4.
Antioxidants (Basel) ; 11(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35740044

ABSTRACT

Oxysterols are a family of 27-carbon cholesterol oxidation derivatives found in low-density lipoproteins (LDLs) and atherosclerotic plaques where they trigger several biological responses involved in the initiation and progression of atherosclerosis. Several pieces of evidence suggest that oxysterols contribute to endothelial dysfunction (ED) due to their ability to alter membrane fluidity and cell permeability leading to inflammation, oxidative stress and apoptosis. The present study aimed to investigate the molecular events occurring in human microvascular endothelial cells (HMEC-1) in response to autoxidation-generated 3ß-hydroxy-5ß-hydroxy-B-norcholestane-6ß-carboxaldehyde (SEC-B) exposure. Our results highlight that SEC-B rapidly activates HMEC-1 by inducing oxidative stress, nitric oxide (NO) production and pro-inflammatory cytokine release. Exposure to SEC-B up to 24 h results in persistent accumulation of the vasodilator NO paralleled by an upregulation of the endothelial nitric oxide synthase (eNOS) enzyme and downregulation of Caveolin-1 (Cav-1) protein levels. Moreover, reduced expression and extracellular release of the vasoconstrictor factor endothelin-1 (ET-1) are observed. Furthermore, SEC-B stimulates the expression of the cytokines interleukin-6 (IL-6) and tumor necrosis factor-like weak inducer of apoptosis (TWEAK). This proinflammatory state leads to increased monocyte recruitment on activated HMEC-1 cells. Our findings add new knowledge on the role of SEC-B in ED and further support its potential implication in atherosclerosis.

5.
Toxicol In Vitro ; 79: 105301, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34923092

ABSTRACT

The biochemical mechanisms by which the antiviral drug Acyclovir (ACV) may induce anticancer effects even without detecting human herpesviruses (HHVs) are still poorly understood. Herein, we investigated for the first time how NCI-H1975 non-small cell lung cancer cells responded in vitro to ACV administration by exploring mitochondrial damage and apoptosis induction. We confirmed ACV ability to cause the inhibition of cancer cell growth even without detecting intracellular HHVs; the drug also significantly inhibited the colony formation capacity of NCI-H1975 cells. Cell cycle analysis revealed an increase of the sub-G1 hypodiploid peak after ACV treatment; the activation of caspase-3 and the presence of DNA laddering sustained the capacity of the drug to induce apoptotic cell death. Regarding mitochondrial toxicity, a reduction of mitochondrial membrane potential, altered mitochondrial size and shape, and mtDNA damage were found after ACV administration. Furthermore, an increment of intracellular reactive oxygen species levels as well as the upregulation of NudT3 involved in DNA repair mechanisms were observed. Altogether, these findings suggest that mitochondria may be possible initial targets and/or sites of ACV cytotoxicity within cancer cells in the absence of intracellular HHVs.


Subject(s)
Acyclovir/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage , DNA, Mitochondrial/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Reactive Oxygen Species/metabolism
6.
J Pineal Res ; 71(1): e12747, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34085316

ABSTRACT

Mitochondrial dysfunction is considered one of the hallmarks of ischemia/reperfusion injury. Mitochondria are plastic organelles that undergo continuous biogenesis, fusion, and fission. They can be transferred between cells through tunneling nanotubes (TNTs), dynamic structures that allow the exchange of proteins, soluble molecules, and organelles. Maintaining mitochondrial dynamics is crucial to cell function and survival. The present study aimed to assess the effects of melatonin on mitochondrial dynamics, TNT formation, and mitochondria transfer in HT22 cells exposed to oxygen/glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin treatment during the reoxygenation phase reduced mitochondrial reactive oxygen species (ROS) production, improved cell viability, and increased the expression of PGC1α and SIRT3. Melatonin also preserved the expression of the membrane translocase proteins TOM20 and TIM23, and of the matrix protein HSP60, which are involved in mitochondrial biogenesis. Moreover, it promoted mitochondrial fusion and enhanced the expression of MFN2 and OPA1. Remarkably, melatonin also fostered mitochondrial transfer between injured HT22 cells through TNT connections. These results provide new insights into the effect of melatonin on mitochondrial network reshaping and cell survival. Fostering TNTs formation represents a novel mechanism mediating the protective effect of melatonin in ischemia/reperfusion injury.


Subject(s)
Brain Ischemia/pathology , Cell Membrane Structures/drug effects , Melatonin/pharmacology , Mitochondria/drug effects , Neurons/ultrastructure , Animals , Cell Line , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/ultrastructure , Mice , Mitochondria/metabolism , Nanotubes , Neurons/drug effects , Neurons/pathology , Reperfusion Injury/pathology
7.
Biol Chem ; 402(10): 1225-1237, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34090314

ABSTRACT

The fluorescent probes represent an important tool in the biological study, in fact characterization of cellular structures and organelles are an important tool-target for understanding the mechanisms regulating most biological processes. Recently, a series of polyamino-macrocycles based on 1,4,7,10-tetraazacyclododecane was synthesized, bearing one or two NBD units (AJ2NBD·4HCl) useful as sensors for metal cations and halides able to target and to detect apolar environment, as lipid membranes. In this paper, we firstly illustrate the chemical synthesis of the AJ2NBD probe, its electronic absorption spectra and its behavior regarding pH of the environment. Lack of any cellular toxicity and an efficient labelling on fresh, living cells was demonstrated, allowing the use of AJ2NBD in biological studies. In particular, this green fluorescent probe may represent a potential dye for the compartments involved in the endosomal/autophagic pathway. This research's field should benefit from the use of AJ2NBD as a vesicular tracer, however, to ensure the precise nature of vesicles/vacuoles traced by this new probe, other more specific tests are needed.


Subject(s)
Fluorescent Dyes , Lysosomes , Autophagy , Endosomes
8.
Br J Pharmacol ; 178(16): 3104-3114, 2021 08.
Article in English | MEDLINE | ID: mdl-32986849

ABSTRACT

Oxidized LDLs (oxLDLs) and oxysterols play a key role in endothelial dysfunction and the development of atherosclerosis. The loss of vascular endothelium function negatively impacts vasomotion, cell growth, adhesiveness and barrier functions. While for some of these disturbances, a reasonable explanation can be provided from a mechanistic standpoint, for many others, the molecular mediators that are involved are unknown. Caveolae, specific plasma membrane domains, have recently emerged as targets and mediators of oxLDL-induced endothelial dysfunction. Caveolae and their associated protein caveolin-1 (Cav-1) are involved in oxLDLs/LDLs transcytosis, mainly through the scavenger receptor class B type 1 (SR-B1 or SCARB1). In contrast, oxLDLs endocytosis is mediated by the lectin-like oxidized LDL receptor 1 (LOX-1), whose activity depends on an intact caveolae system. In addition, LOX-1 regulates the expression of Cav-1 and vice versa. On the other hand, oxLDLs may affect cholesterol plasma membrane content/distribution thus influencing caveolae architecture, Cav-1 localization and the associated signalling. Overall, the evidence indicate that caveolae have both active and passive roles in oxLDL-induced endothelial cell dysfunction. First, as mediators of lipid uptake and transfer in the subendothelial space and, later, as targets of changes in composition/dynamics of plasma membrane lipids resulting from increased levels of circulating oxLDLs. Gaining a better understanding of how oxLDLs interact with endothelial cells and modulate caveolae-mediated signalling pathways, leading to endothelial dysfunction, is crucial to find new targets for intervention to tackle atherosclerosis and the related clinical entities. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Subject(s)
Caveolae , Receptors, LDL , Cholesterol , Endothelial Cells , Lipoproteins, LDL
9.
Mol Pharm ; 17(7): 2691-2702, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32484691

ABSTRACT

Copper(II) carbosilane metallodendrimers are promising nanosized anticancer metallodrugs. The precise control on their design enables an accurate structure-to-activity study. We hypothesized that different structural features, such as the dendrimer generation and metal counterion, modulate the interaction with tumor cells, and subsequently, the effectivity and selectivity of the therapy. A computer-aided analysis of the electron paramagnetic resonance (EPR) spectra allowed us to obtain dynamical and structural details on the interactions over time between the dendrimers and the cells, the myeloid U937 tumor cells and peripheral blood mononuclear cells (PBMC). The intracellular fate of the metallodendrimers was studied through a complete in vitro evaluation, including cytotoxicity, cytostaticity, and sublethal effects regarding mitochondria function, lysosomal compartments, and autophagic organelle involvement. EPR results confirmed a higher membrane stabilization for chloride dendrimers and low generation complexes, which ultimately influence the metallodrug uptake and intracellular fate. The in vitro evaluation revealed that Cu(II) metallodendrimers are cytostatic and moderate cytotoxic agents for U937 tumor cells, inducing death processes through the mitochondria-lysosome axis as well as autophagic vacuole formation, while barely affecting healthy monocytes. The study provided valuable insight into the mechanism of action of these nanosized metallodrugs and relevant structural parameters affecting the activity.


Subject(s)
Copper/chemistry , Cytotoxins/administration & dosage , Dendrimers/administration & dosage , Electron Spin Resonance Spectroscopy/methods , Leukocytes, Mononuclear/drug effects , Mitochondria/drug effects , Silanes/chemistry , Autophagy , Cell Line, Tumor , Cytotoxins/chemistry , Cytotoxins/toxicity , Dendrimers/chemistry , Dendrimers/metabolism , Dendrimers/toxicity , Humans , Lysosomes/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/physiology
10.
J Steroid Biochem Mol Biol ; 190: 234-241, 2019 06.
Article in English | MEDLINE | ID: mdl-30991093

ABSTRACT

Oxysterols, oxidized derivatives of cholesterol found in LDL and atherosclerotic plaques, trigger several biological responses involved in the initiation and progression of atherosclerosis. Endothelial dysfunction, which occurs when vascular homeostasis is altered, plays a key role in the pathogenesis of several metabolic diseases. The contribution of endoplasmic reticulum (ER) stress to endothelial disfunction is a relatively recent area of investigation. There is a well-established link between LDL oxidation and ER stress but the role played by specific products of lipid oxidation into this interaction is still to be defined. The present study shows that secosterol-B (SEC-B), 3ß-hydroxy-5ß-hydroxy-B-norcholestane-6ßcarboxaldehyde, a cholesterol autoxidation product recently identified in the atherosclerotic plaque, is able to induce ER stress in HUVEC cells, as revealed by significant expansion and change of structure. At low doses, i.e. 1 and 5 µM, cells try to cope with this stress by activating autophagy and the ubiquitin proteasome system in the attempt to restore ER function. However, at higher doses, i.e. 20 µM, cell apoptosis occurs in a pathway that involves early phosphorylation of eIF2α and NF-kB activation, suggesting that the adaptive program fails and the cell activates the apoptotic program. These findings provide additional insight about the role of oxysterols in endothelial dysfunction and its potential involvement in atherosclerotic pathophysiology.


Subject(s)
Cholesterol/analogs & derivatives , Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Endothelial Cells/metabolism , Apoptosis , Autophagy , Cholesterol/metabolism , Cholesterol/pharmacology , Endoplasmic Reticulum/ultrastructure , Endothelial Cells/ultrastructure , Eukaryotic Initiation Factor-2/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , NF-kappa B/metabolism
11.
PLoS One ; 13(8): e0203001, 2018.
Article in English | MEDLINE | ID: mdl-30157259

ABSTRACT

Neurons contain a high number of mitochondria, these neuronal cells produce elevated levels of oxidative stress and live for a long time without proliferation; therefore, mitochondrial homeostasis is crucial to their health. Investigations have recently focused on mitochondrial dynamics revealing the ability of these organelles to change their distribution and morphology. It is known that mitochondrial fission is necessary for the transmission of mitochondria to daughter cells during mitosis and mitochondrial fragmentation has been used as an indicator of cell death and mitochondrial dysfunction. Oxidative stress is a trigger able to induce changes in the mitochondrial network. The aim of the present study was to determine the effects of melatonin on the mitochondrial network in HT22 serum-deprived cells. Our results showed that serum deprivation increased reactive oxygen species (ROS) content, promoted the activation of plasma membrane voltage-dependent anion channels (VDACs) and affected the expression of pDRP1 and DRP1 fission proteins. Moreover, parallel increases in apoptotic and autophagic features were found. Damaged and dysfunctional mitochondria are deleterious to the cell; hence, the degradation of such mitochondria through mitophagy is crucial to cell survival. Our results suggest that melatonin supplementation reduces cell death and restores mitochondrial function through the regulation of autophagy.


Subject(s)
Cytoprotection/drug effects , Hippocampus/cytology , Hippocampus/drug effects , Melatonin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Serum/metabolism , Animals , Cell Death/drug effects , Cell Line , Cell Proliferation/drug effects , Electrophysiological Phenomena/drug effects , Hippocampus/metabolism , Mice , Oxidative Stress/drug effects , Voltage-Dependent Anion Channels/metabolism
12.
Toxins (Basel) ; 10(6)2018 06 13.
Article in English | MEDLINE | ID: mdl-29899248

ABSTRACT

Campylobacter jejuni is a Gram-negative spiral-shaped bacterium, commonly associated with gastroenteritis in humans. It explicates its virulence also by the cytolethal distending toxin (CDT), able to cause irreversible cell cycle arrest. Infection by C. jejuni may result in the development of the Guillain⁻Barré Syndrome, an acute peripheral neuropathy. Symptoms of this disease could be caused by CDT-induced cell death and a subsequent inflammatory response. We tested C. jejuni lysates from different strains on donor monocytes: in fact, monocytes are potent producers of both pro- and anti-inflammatory cytokines, playing a major role in innate immunity and in non-specific host responses. We found, by cytometric and confocal analyses, that mitochondria and lysosomes were differently targeted: The C. jejuni strain that induced the most relevant mitochondrial alterations was the ATCC 33291, confirming an intrinsic apoptotic pathway, whereas the C. jejuni ISS 1 wild-type strain mostly induced lysosomal alterations. Lysates from all strains induced endoplasmic reticulum (ER) stress in monocytes, suggesting that ER stress was not associated with CDT but to other C. jejuni virulence factors. The ER data were consistent with an increase in cytosolic Ca2+ content induced by the lysates. On the contrary, the changes in lysosomal acidic compartments and p53 expression (occurring together from time 0, T0, to 24 h) were mainly due to CDT. The loss of p53 may prevent or impede cell death and it was not observable with the mutant strain. CDT not only was responsible for specific death effects but also seemed to promote an apoptotic stimuli-resisting pathway.


Subject(s)
Campylobacter jejuni , Endoplasmic Reticulum Stress , Monocytes/physiology , Cell Death , Cell Survival , Humans , Lysosomes , Mitochondria , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/metabolism
13.
Cell Physiol Biochem ; 46(1): 389-400, 2018.
Article in English | MEDLINE | ID: mdl-29590658

ABSTRACT

BACKGROUND/AIMS: Life on Earth is constantly exposed to electromagnetic fields (EMFs) and the effects induced by EMFs on biological systems have been extensively studied producing different and sometimes contradictory results. Extremely low-frequency electromagnetic fields (ELF-EMFs) have shown to play a role in regulating cell proliferation and differentiation, although how EMFs influence these processes remains unclear. Human acute promyelocytic leukemia (APL) cells are characterized by the arrest of differentiation at the promyelocytic stage due to epigenetic perturbations induced by PML/RARα fusion protein (Promyelocytic Leukemia protein - PML/Retinoic Acid Receptor alpha - RARα). Therapeutic administration of all-trans retinoic acid (ATRA) re-establishes the leukemogenic mechanism re-inducing the normal differentiation processes. METHODS: We studied the effects of ELF-EMFs (50 Hz, 2 mT) on the ATRA-mediated granulocytic differentiation process of APL NB4 cells (a cell line established from the bone marrow of a patient affected by the acute promyelocytic leukemia) by monitoring cellular proliferation and morphology, nitrob lue tetrazolium (NBT) reduction and the expression of differentiation surface markers. Finally, we investigated mechanisms focusing on reactive oxygen species (ROS) generation and related molecular pathways. RESULTS: ELF-EMF exposure decreases cellular proliferation potential and helps ATRA-treated NB4 cells to mature. Furthermore, the analysis of ROS production and the consequent extracellular signal regulated kinases (ERK1/2) phosphorylation suggest that a changed intracellular oxidative balance may influence the biological effects of ELF-EMFs. CONCLUSIONS: These results indicate that the exposure to ELF-EMF promotes ATRA-induced granulocytic differentiation of APL cells.


Subject(s)
Cell Differentiation/drug effects , Tretinoin/pharmacology , Bone Marrow Cells/cytology , Cell Differentiation/radiation effects , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Electromagnetic Fields , Humans , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Tetradecanoylphorbol Acetate/analogs & derivatives , Tetradecanoylphorbol Acetate/pharmacology
14.
J Funct Morphol Kinesiol ; 3(3)2018 Jul 25.
Article in English | MEDLINE | ID: mdl-33466971

ABSTRACT

We are glad to introduce the ninth Journal Club. This edition is focused on several relevant studies published in the last few years in the field of Exercise-Induced Immune Response, chosen by our Editorial Board members and their colleagues. We hope to stimulate your curiosity in this field and to share with you the passion for sport seen also from the scientific point of view. The Editorial Board members wish you an inspiring lecture.

SELECTION OF CITATIONS
SEARCH DETAIL
...