Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 2020 May 06.
Article in English | MEDLINE | ID: mdl-32387612

ABSTRACT

Synthesis of new hydrazinocurcumin derivative 4-((E)-2-(1-(4-Methoxy benzyl)-6-p-tolylpyridazin-3-yl)-3-((E)-4-hydroxy-3-methoxystyryl)-1H-pyrazol-5-yl)vinyl)-2-methoxyphenol (HCUR) through the reaction of curcumin (CUR) with 1- (4-(2-Methoxybenzyl)-6-p-tolylpyridazin-3-yl)hydrazine(VII). Nanoparticles formulations of (HCUR) loaded chitosan (CS), ZnO, Au, CS-ZnO and CS-Au NPs, via self-assembling process were developed to give CS-HCUR NPs, ZnO-HCUR NPs, Au-HCUR NPs, CS-ZnO-HCUR NPs and CS-Au-HCUR NPs. Chemical structures of (HCUR) and (HCUR) loaded nanoparticles formulations were characterized by UV-Vis, FTIR, Mass Spectrum, Elemental Analysis, 1HNMR, 13CNMR, TGA, DSC, SEM and TEM. The particle size of the nanoformulations ranged from 16.8 to 59.6 nm. NPs formulations were used as delivery system to sustain controlled drug delivery. Drug release profiles and cytotoxicity of NPs formulations against HCT-116 (colon carcinoma) and HepG-2 (hepatocellular cancer) cell lines were investigated. Drug release studies showed that by decreasing the pH value of release medium from 7.4 to 5.4 increased the release rate of (HCUR) from the NPs formulations. Cell viability study proved that NPs formulations revealed higher activity against HCT- 116 cell than (CUR) especially CS-HCUR NPs which displayed the most active with cell viability 1.80%. Moreover, ZnO-HCUR NPs expressed as the highest cytotoxic effect against HepG-2 cell with cell viability 0.98%.

2.
Int J Biol Macromol ; 64: 328-33, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24361667

ABSTRACT

In this study, two new green biodegradable hydrogels (A1, A2) based on modified chitosan by dialdehydes were prepared via reaction of chitosan with [4,4'-diformyl-α-ω-diphenoxy-ethane or 4,4'-diformyl-2,2'-dimethoxy-α-ω-diphenoxy-ethane] under different reaction conditions. Characterization techniques were applied to the prepared hydrogels as FTIR, TGA, SEM, and X-ray. The efficiency of adsorption of Cu (II), Co (II), Zn (II), Hg (II) and Pb (II) ions from aqueous solution under different pH values were investigated. The results revealed that these hydrogels showed pH sensitive behavior in metal removal. Hydrogel (A2) showed the highest adsorption of Hg (II) ion at pH 5.


Subject(s)
Chitosan/chemistry , Hydrogels/chemistry , Metals/chemistry , Adsorption , Hydrogels/chemical synthesis , Hydrogen-Ion Concentration , Ions/chemistry , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...