Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(11): 7664-7675, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38440282

ABSTRACT

A series of new sulfonamide derivatives connected through an imine linker to five or seven membered heterocycles were designed and synthesized. All synthesized derivatives were characterized using a variety of spectroscopic methods, including IR, 1HNMR, and 13CNMR. In vitro α-glucosidase and α-amylase inhibition activities, as well as glucose uptake were assessed for each of the synthesized compounds. Four sulfonamide derivatives namely 3a, 3b, 3h and 6 showed excellent inhibitory potential against α-glucosidase with IC50 values of 19.39, 25.12, 25.57 and 22.02 µM, respectively. They were 1.05- to 1.39-fold more potent than acarbose. Sulfonamide derivatives 3g, 3i and 7 (EC50 values of 1.29, 21.38 and 19.03 µM, respectively) exhibited significant glucose uptake activity that were 1.62- to 27-fold more potent than berberine. Both α-glucosidase protein (PDB: 2QMJ) and α-amylase (PDB: 1XCW) complexed with acarbose were adopted for docking investigations for the most active synthesized compounds. The docked compounds were able to inhabit the same space as the acarviosin ring of acarbose. The docking of the most active compounds showed an analogous binding with the active site of α-glucosidase as acarbose. The superior activity of the synthesized compounds against α-glucosidase enzyme than α-amylase enzyme can be rationalized by the weak interaction with the α-amylase. The physiochemical parameters of all synthesized compounds were aligned with Lipinski's rule of five.

2.
Bioorg Chem ; 143: 107102, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211551

ABSTRACT

Monoamine oxidases (MAOs) and vascular endothelial growth factor receptor-2 (VEGFR-2) are promoters of colorectal cancer (CRC) and central signaling nodes in epithelial-mesenchymal transition (EMT) induced by activating hypoxia-inducible factors (HIFs). Herein, a novel series of rationally designed triazole-tethered quinoxalines were synthesized and evaluated against HCT-116 CRC cells. The tailored scaffolds combine the pharmacophoric themes of both VEGFR-2 inhibitors and MAO inhibitors. All the synthesized derivatives were screened utilizing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for their possible cytotoxic effects on normal human colonocytes, then evaluated for their anticancer activities against HCT-116 cells overexpressing MAOs. The hit derivatives 11 and 14 exhibited IC50 = 18.04 and 7.850 µM, respectively, against HCT-116cells within their EC100 doses on normal human colonocytes. Wound healing assay revealed their efficient CRC antimetastatic activities recording HCT-116 cell migration inhibition exceeding 75 %. In vitro enzymatic assays demonstrated that both 11 and 14 efficiently inhibited VEGFR-2 (IC50 = 88.79 and 9.910 nM), MAO-A (IC50 = 0.763 and 629.1 nM) and MAO-B (IC50 = 0.488 and 209.6 nM) with observed MAO-B over MAO-A selectivity (SI = 1.546 and 3.001), respectively. Enzyme kinetics studies were performed for both compounds to identify their mode of MAO-B inhibition. Furthermore, qRT-PCR analysis showed that the hits efficiently downregulated HIF-1α in HCT-116cells by 3.420 and 16.96 folds relative to untreated cells. Docking studies simulated their possible binding modes within the active sites of VEGFR-2 and MAO-B to highlight their essential structural determinants of activities. Finally, they recorded in silico drug-like absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles as well as ligand efficiency metrics.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase/metabolism , Protein Kinase Inhibitors/pharmacology , Quinoxalines/pharmacology , Structure-Activity Relationship , Triazoles/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Colorectal Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...