Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 8): 127163, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37778589

ABSTRACT

Due to the multilayer structure of skin tissue, the fabrication of a 3-layer scaffold could result in planned dermal regeneration. Herein, polyurethane (PU) and polycaprolactone (PCL), as a function of their mechanical stability and collagen due to its arginine-glycine-aspartic acid sequences, zinc ions because of overcoming the common problems of biological factors were employed. The scaffolds' physical, mechanical, and biological properties were examined by SEM, FTIR, contact angle, mechanical tensile, bacteriocidal efficacy, and hemolysis. Also, after L-929 fibroblast seeding, their biological activity was determined by SEM, DAPI, and MTT assays. Then, the cell-seeded scaffolds were implanted in full-thickness wounds of rats and evaluated by wound closure, histological, and molecular techniques. The in vivo studies showed better wound closure with the composite scaffold containing zinc ions. While its dermal re-organization was retarded in the presence of zinc ions compared to the composite scaffold containing non-doped bioglass. Despite this, the doped composite scaffold indicated better observations with the histological evaluations than the nontreated and bare scaffold groups. Real-time PCR confirmed the higher expression of FGF2 and FGFR genes in rats treated with the zinc-doped composite scaffold. In conclusion, PU/PCL-collagen/PCL-collagen containing the doped or non-doped nanoparticles showed better potential to heal dermal injuries.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Rats , Animals , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Biomimetics , Zinc , Collagen/chemistry , Polyesters/chemistry , Ions
2.
Int J Reprod Biomed ; 19(1): 97-104, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33554007

ABSTRACT

BACKGROUND: The examination of sperm parameters and sperm DNA integrity are necessary for male fertility expression. These parameters can be affected by method of sperm separation. OBJECTIVE: To measure the damage of each sperm separation method on the sperm parameters and sperm DNA integrity. MATERIALS AND METHODS: In this experimental study, semen samples of 20 infertile men with asthenoteratozoospermia (Infertility Research Center, Qom, Iran, 2017) were processed in three ways: density gradient centrifugation (DGC), cumulus column, and incubation with supernatant products of adipose tissue-derived adult stem cells (SPAS). The results of sperm parameters and DNA fragmentation before and after the process were statistically analyzed. RESULTS: The number of separated sperms by normal morphologies during the SPAS and the cumulus column was significantly more than the corresponding population in the DGC group. In addition, although all three methods have the same ability to increase total sperm motility and the number of recovered sperms, in the field of forwarding movement and DNA fragmentation, the SPAS method performed more efficiently (p = 0.021). CONCLUSION: Sperm parameters and DNA fragmentation in the SPAS group were better than those in the DGC and cumulus column groups. Furthermore, it has been shown that the sperm capacity was increased with the SPAS method. However, the rearrangement of sperm chromatin by reducing the disulfide bridges and providing the possibility of re-histone over capacity causes a significant reduction in DNA fragmentation.

3.
Zygote ; 26(5): 366-371, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30280684

ABSTRACT

SummaryThe high miscarriage rates that result following transfer of embryos derived from in vitro maturation (IVM) of oocytes necessitate improvements in the processes involved. This study aimed to improve the quality of in vitro matured oocytes using granulosa cell conditioned medium (GCCM) as the culture medium. In this work, germinal vesicle (GV)-stage oocytes from NMRI mice were collected and cultured using three types of culture medium: Base medium (BM) (control), 50% granulosa cell conditioned medium (GCCM50) and 100% GCCM (GCCM100). After IVM, the mitochondria activity potential and viability of metaphase II (MII) oocytes were evaluated by JC-1 and trypan blue staining, respectively. Maturational gene expression levels of CyclinB1, Cdk1 and Gdf9 in the control, GCCM50 and GCCM100 samples were analyzed using real-time polymerase chain reaction (PCR). The viability rate of in vitro matured oocytes was highest in the GCCM50 group. JC-1 staining showed that GCCM50 enhances mitochondrial activity more than the other groups (P < 0.05). Gene expression levels of Cdk1 and Gdf9 were higher in the group with GCCM50 treatment, than in the control and GCCM100 groups (P < 0.05), while the expression level of CyclinB1 did not differ among the groups. The results indicated that a 50% concentration of GCCM in combination with BM components enhanced MII and viability rates and mitochondria activity of mouse immature oocytes.


Subject(s)
Culture Media, Conditioned/pharmacology , Gene Expression Regulation , In Vitro Oocyte Maturation Techniques/methods , Mitochondria/metabolism , Oocytes/physiology , Animals , CDC2 Protein Kinase/genetics , Cell Survival , Cyclin B1/genetics , Female , Granulosa Cells/cytology , Growth Differentiation Factor 9/genetics , Mice , Oocytes/cytology , Oocytes/drug effects , Trypan Blue
SELECTION OF CITATIONS
SEARCH DETAIL
...