Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Diabetes Care ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861647

ABSTRACT

OBJECTIVE: To evaluate associations between plasma biomarkers of brain injury and MRI and cognitive measures in participants with type 1 diabetes (T1D) from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. RESEARCH DESIGN AND METHODS: Plasma amyloid-ß-40, amyloid-ß-42, neurofilament light chain (NfL), phosphorylated Tau-181 (pTau-181), and glial fibrillary acidic protein (GFAP) were measured in 373 adults who participated in the DCCT/EDIC study. MRI assessments included total brain and white matter hyperintensity volumes, white matter mean fractional anisotropy, and indices of Alzheimer disease (AD)-like atrophy and predicted brain age. Cognitive measures included memory and psychomotor and mental efficiency tests and assessments of cognitive impairment. RESULTS: Participants were 60 (range 44-74) years old with 38 (30-51) years' T1D duration. Higher NfL was associated with an increase in predicted brain age (0.51 years per 20% increase in NfL; P < 0.001) and a 19.5% increase in the odds of impaired cognition (P < 0.01). Higher NfL and pTau-181 were associated with lower psychomotor and mental efficiency (P < 0.001) but not poorer memory. Amyloid-ß measures were not associated with study measures. A 1% increase in mean HbA1c was associated with a 14.6% higher NfL and 12.8% higher pTau-181 (P < 0.0001). CONCLUSIONS: In this aging T1D cohort, biomarkers of brain injury did not demonstrate an AD-like profile. NfL emerged as a biomarker of interest in T1D because of its association with higher HbA1c, accelerated brain aging on MRI, and cognitive dysfunction. Our study suggests that early neurodegeneration in adults with T1D is likely due to non-AD/nonamyloid mechanisms.

2.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746228

ABSTRACT

Personalized functional networks (FNs) derived from functional magnetic resonance imaging (fMRI) data are useful for characterizing individual variations in the brain functional topography associated with the brain development, aging, and disorders. To facilitate applications of the personalized FNs with enhanced reliability and reproducibility, we develop an open-source toolbox that is user-friendly, extendable, and includes rigorous quality control (QC), featuring multiple user interfaces (graphics, command line, and a step-by-step guideline) and job-scheduling for high performance computing (HPC) clusters. Particularly, the toolbox, named personalized functional network modeling (pNet), takes fMRI inputs in either volumetric or surface type, ensuring compatibility with multiple fMRI data formats, and computes personalized FNs using two distinct modeling methods: one method optimizes the functional coherence of FNs, while the other enhances their independence. Additionally, the toolbox provides HTML-based reports for QC and visualization of personalized FNs. The toolbox is developed in both MATLAB and Python platforms with a modular design to facilitate extension and modification by users familiar with either programming language. We have evaluated the toolbox on two fMRI datasets and demonstrated its effectiveness and user-friendliness with interactive and scripting examples. pNet is publicly available at https://github.com/MLDataAnalytics/pNet.

3.
Alzheimers Dement ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644682

ABSTRACT

INTRODUCTION: We investigate pathological correlates of plasma phosphorylated tau 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) across a clinically diverse spectrum of neurodegenerative disease, including normal cognition (NormCog) and impaired cognition (ImpCog). METHODS: Participants were NormCog (n = 132) and ImpCog (n = 461), with confirmed ß-amyloid (Aß+/-) status (cerebrospinal fluid, positron emission tomography, autopsy) and single molecule array plasma measurements. Logistic regression and receiver operating characteristic (ROC) area under the curve (AUC) tested how combining plasma analytes discriminated Aß+ from Aß-. Survival analyses tested time to clinical dementia rating (global CDR) progression. RESULTS: Multivariable models (p-tau+GFAP+NfL) had the best performance to detect Aß+ in NormCog (ROCAUC = 0.87) and ImpCog (ROCAUC = 0.87). Survival analyses demonstrated that higher NfL best predicted faster CDR progression for both Aß+ (hazard ratio [HR] = 2.94; p = 8.1e-06) and Aß- individuals (HR = 3.11; p = 2.6e-09). DISCUSSION: Combining plasma biomarkers can optimize detection of Alzheimer's disease (AD) pathology across cognitively normal and clinically diverse neurodegenerative disease. HIGHLIGHTS: Participants were clinically heterogeneous, with autopsy- or biomarker-confirmed Aß. Combining plasma p-tau181, GFAP, and NfL improved diagnostic accuracy for Aß status. Diagnosis by plasma biomarkers is more accurate in amnestic AD than nonamnestic AD. Plasma analytes show independent associations with tau PET and post mortem Aß/tau. Plasma NfL predicted longitudinal cognitive decline in both Aß+ and Aß- individuals.

4.
J Magn Reson Imaging ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490945

ABSTRACT

BACKGROUND: Left atrial (LA) myopathy is thought to be associated with silent brain infarctions (SBI) through changes in blood flow hemodynamics leading to thrombogenesis. 4D-flow MRI enables in-vivo hemodynamic quantification in the left atrium (LA) and LA appendage (LAA). PURPOSE: To determine whether LA and LAA hemodynamic and volumetric parameters are associated with SBI. STUDY TYPE: Prospective observational study. POPULATION: A single-site cohort of 125 Participants of the multiethnic study of atherosclerosis (MESA), mean age: 72.3 ± 7.2 years, 56 men. FIELD STRENGTH/SEQUENCE: 1.5T. Cardiac MRI: Cine balanced steady state free precession (bSSFP) and 4D-flow sequences. Brain MRI: T1- and T2-weighted SE and FLAIR. ASSESSMENT: Presence of SBI was determined from brain MRI by neuroradiologists according to routine diagnostic criteria in all participants without a history of stroke based on the MESA database. Minimum and maximum LA volumes and ejection fraction were calculated from bSSFP data. Blood stasis (% of voxels <10 cm/sec) and peak velocity (cm/sec) in the LA and LAA were assessed by a radiologist using an established 4D-flow workflow. STATISTICAL TESTS: Student's t test, Mann-Whitney U test, one-way ANOVA, chi-square test. Multivariable stepwise logistic regression with automatic forward and backward selection. Significance level P < 0.05. RESULTS: 26 (20.8%) had at least one SBI. After Bonferroni correction, participants with SBI were significantly older and had significantly lower peak velocities in the LAA. In multivariable analyses, age (per 10-years) (odds ratio (OR) = 1.99 (95% confidence interval (CI): 1.30-3.04)) and LAA peak velocity (per cm/sec) (OR = 0.87 (95% CI: 0.81-0.93)) were significantly associated with SBI. CONCLUSION: Older age and lower LAA peak velocity were associated with SBI in multivariable analyses whereas volumetric-based measures from cardiac MRI or cardiovascular risk factors were not. Cardiac 4D-flow MRI showed potential to serve as a novel imaging marker for SBI. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

5.
JAMA Psychiatry ; 81(5): 456-467, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353984

ABSTRACT

Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50 000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.


Subject(s)
Aging , Brain , Humans , Aged , Female , Male , Middle Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology , Aging/genetics , Aging/physiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Cohort Studies , Deep Learning
6.
Ann Neurol ; 95(5): 866-875, 2024 May.
Article in English | MEDLINE | ID: mdl-38362733

ABSTRACT

OBJECTIVE: Subclinical brain infarcts (SBI) increase the risk for stroke and dementia, but whether they should be considered equivalent to symptomatic stroke when determining blood pressure targets remains unclear. We tested whether intensive systolic blood pressure (SBP) treatment reduced the risk of new SBI or stroke and determined the association between SBI and cognitive impairment. METHODS: In this secondary analysis of SPRINT (Systolic Pressure Intervention Trial), participants ≥50 years old, with SBP 130-180mmHg and elevated cardiovascular risk but without known clinical stroke, dementia, or diabetes, were randomized to intensive (<120mmHg) or standard (<140mmHg) SBP treatment. Brain magnetic resonance images collected at baseline and follow-up were read for SBI. The occurrence of mild cognitive impairment (MCI) or probable dementia (PD) was evaluated. RESULTS: For 667 participants at baseline, SBI were identified in 75 (11%). At median 3.9 years follow-up, 12 of 457 had new SBI on magnetic resonance imaging (5 intensive, 7 standard), whereas 8 had clinical stroke (4 per group). Baseline SBI (subhazard ratio [sHR] = 3.90; 95% CI 1.49 to 10.24; p = 0.006), but not treatment group, was associated with new SBI or stroke. For participants with baseline SBI, intensive treatment reduced their risk for recurrent SBI or stroke (sHR = 0.050; 95% CI 0.0031 to 0.79; p = 0.033). Baseline SBI also increased risk for MCI or PD during follow-up (sHR = 2.38; 95% CI 1.23 to 4.61; p = 0.010). INTERPRETATION: New cerebral ischemic events were infrequent, but intensive treatment mitigated the increased risk for participants with baseline SBI, indicating primary prevention SBP goals are still appropriate when SBI are present. ANN NEUROL 2024;95:866-875.


Subject(s)
Antihypertensive Agents , Brain Infarction , Cognitive Dysfunction , Humans , Male , Female , Aged , Middle Aged , Antihypertensive Agents/therapeutic use , Brain Infarction/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Hypertension/complications , Blood Pressure/physiology , Stroke/diagnostic imaging , Dementia
7.
J Magn Reson Imaging ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400805

ABSTRACT

BACKGROUND: Arterial spin labeling (ASL) derived cerebral blood flow (CBF) maps are prone to artifacts and noise that can degrade image quality. PURPOSE: To develop an automated and objective quality evaluation index (QEI) for ASL CBF maps. STUDY TYPE: Retrospective. POPULATION: Data from N = 221 adults, including patients with Alzheimer's disease (AD), Parkinson's disease, and traumatic brain injury. FIELD STRENGTH/SEQUENCE: Pulsed or pseudocontinuous ASL acquired at 3 T using non-background suppressed 2D gradient-echo echoplanar imaging or background suppressed 3D spiral spin-echo readouts. ASSESSMENT: The QEI was developed using N = 101 2D CBF maps rated as unacceptable, poor, average, or excellent by two neuroradiologists and validated by 1) leave-one-out cross validation, 2) assessing if CBF reproducibility in N = 53 cognitively normal adults correlates inversely with QEI, 3) if iterative discarding of low QEI data improves the Cohen's d effect size for CBF differences between preclinical AD (N = 27) and controls (N = 53), 4) comparing the QEI with manual ratings for N = 50 3D CBF maps, and 5) comparing the QEI with another automated quality metric. STATISTICAL TESTS: Inter-rater reliability and manual vs. automated QEI were quantified using Pearson's correlation. P < 0.05 was considered significant. RESULTS: The correlation between QEI and manual ratings (R = 0.83, CI: 0.76-0.88) was similar (P = 0.56) to inter-rater correlation (R = 0.81, CI: 0.73-0.87) for the 2D data. CBF reproducibility correlated negatively (R = -0.74, CI: -0.84 to -0.59) with QEI. The effect size comparing patients and controls improved (R = 0.72, CI: 0.59-0.82) as low QEI data was discarded iteratively. The correlation between QEI and manual ratings (R = 0.86, CI: 0.77-0.92) of 3D ASL was similar (P = 0.09) to inter-rater correlation (R = 0.78, CI: 0.64-0.87). The QEI correlated (R = 0.87, CI: 0.77-0.92) significantly better with manual ratings than did an existing approach (R = 0.54, CI: 0.30-0.72). DATA CONCLUSION: Automated QEI performed similarly to manual ratings and can provide scalable ASL quality control. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

8.
Nat Commun ; 15(1): 354, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191573

ABSTRACT

Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and single nucleotide polymorphism data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-associated neuroimaging phenotypes.


Subject(s)
Alzheimer Disease , Neuroimaging , Humans , Endophenotypes , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain/diagnostic imaging , Cluster Analysis
9.
Alzheimers Dement ; 20(3): 1586-1600, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38050662

ABSTRACT

INTRODUCTION: Variability in relationship of tau-based neurofibrillary tangles (T) and neurodegeneration (N) in Alzheimer's disease (AD) arises from non-specific nature of N, modulated by non-AD co-pathologies, age-related changes, and resilience factors. METHODS: We used regional T-N residual patterns to partition 184 patients within the Alzheimer's continuum into data-driven groups. These were compared with groups from 159 non-AD (amyloid "negative") patients partitioned using cortical thickness, and groups in 98 patients with ante mortem MRI and post mortem tissue for measuring N and T, respectively. We applied the initial T-N residual model to classify 71 patients in an independent cohort into predefined groups. RESULTS: AD groups displayed spatial T-N mismatch patterns resembling neurodegeneration patterns in non-AD groups, similarly associated with non-AD factors and diverging cognitive outcomes. In the autopsy cohort, limbic T-N mismatch correlated with TDP-43 co-pathology. DISCUSSION: T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability in AD.


Subject(s)
Alzheimer Disease , Resilience, Psychological , Humans , Alzheimer Disease/pathology , tau Proteins , Neurofibrillary Tangles/pathology , Magnetic Resonance Imaging , Amyloid beta-Peptides
10.
Alzheimers Dement ; 20(2): 1397-1405, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009395

ABSTRACT

INTRODUCTION: Heart rate (HR) fragmentation indices quantify breakdown of HR regulation and are associated with atrial fibrillation and cognitive impairment. Their association with brain magnetic resonance imaging (MRI) markers of small vessel disease is unexplored. METHODS: In 606 stroke-free participants of the Multi-Ethnic Study of Atherosclerosis (mean age 67), HR fragmentation indices including percentage of inflection points (PIP) were derived from sleep study recordings. We examined PIP in relation to white matter hyperintensity (WMH) volume, total white matter fractional anisotropy (FA), and microbleeds from 3-Tesla brain MRI completed 7 years later. RESULTS: In adjusted analyses, higher PIP was associated with greater WMH volume (14% per standard deviation [SD], 95% confidence interval [CI]: 2, 27%, P = 0.02) and lower WM FA (-0.09 SD per SD, 95% CI: -0.16, -0.01, P = 0.03). DISCUSSION: HR fragmentation was associated with small vessel disease. HR fragmentation can be measured automatically from ambulatory electrocardiogram devices and may be useful as a biomarker of vascular brain injury.


Subject(s)
Cerebral Small Vessel Diseases , Stroke , White Matter , Humans , Aged , Heart Rate , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Stroke/pathology , White Matter/diagnostic imaging , White Matter/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology
11.
Clin Nucl Med ; 49(1): 9-15, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38048554

ABSTRACT

AIM: The differentiation of paragangliomas, schwannomas, meningiomas, and other neuroaxis tumors in the head and neck remains difficult when conventional MRI is inconclusive. This study assesses the utility of 68 Ga-DOTATATE PET/CT as an adjunct to hone the diagnosis. PATIENTS AND METHODS: This retrospective study considered 70 neuroaxis lesions in 52 patients with 68 Ga-DOTATATE PET/CT examinations; 22 lesions (31%) had pathologic confirmation. Lesions were grouped based on pathological diagnosis and best radiologic diagnosis when pathology was not available. Wilcoxon rank sum tests were used to test for differences in SUV max among paragangliomas, schwannomas, and meningiomas. Receiver operator characteristic curves were constructed. RESULTS: Paragangliomas had a significantly greater 68 Ga-DOTATATE uptake (median SUV max , 62; interquartile range [IQR], 89) than nonparagangliomas. Schwannomas had near-zero 68 Ga-DOTATATE uptake (median SUV max , 2; IQR, 1). Intermediate 68 Ga-DOTATATE uptake was seen for meningiomas (median SUV max , 19; IQR, 6) and other neuroaxis lesions (median SUV max , 7; IQR, 9). Receiver operator characteristic analysis demonstrated an area under the curve of 0.87 for paragangliomas versus all other lesions and 0.97 for schwannomas versus all other lesions. CONCLUSIONS: Marked 68 Ga-DOTATATE uptake (>50 SUV max ) favors a diagnosis of paraganglioma, although paragangliomas exhibit a wide variability of uptake. Low to moderate level 68 Ga-DOTATATE uptake is nonspecific and may represent diverse pathophysiology including paraganglioma, meningioma, and other neuroaxis tumors but essentially excludes schwannomas, which exhibited virtually no uptake.


Subject(s)
Meningeal Neoplasms , Meningioma , Neurilemmoma , Neuroendocrine Tumors , Organometallic Compounds , Paraganglioma , Humans , Positron Emission Tomography Computed Tomography , Meningioma/diagnostic imaging , Retrospective Studies , Positron-Emission Tomography , Paraganglioma/diagnostic imaging , Meningeal Neoplasms/diagnostic imaging , Neuroendocrine Tumors/pathology
12.
Alzheimers Dement ; 20(3): 1784-1796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38108158

ABSTRACT

INTRODUCTION: Vascular risk factors contribute to cognitive decline suggesting that maintaining cerebrovascular health could reduce dementia risk. The objective of this study is to evaluate the association of cerebrovascular reactivity (CVR), a measure of brain blood vessel elasticity, with mild cognitive impairment (MCI) and dementia. METHODS: Participants were enrolled in the Systolic Blood Pressure Intervention Trial Memory and Cognition in Decreased Hypertension (SPRINT-MIND) magnetic resonance imaging substudy. Baseline CVR in Alzheimer's disease (AD) signature regions were primary variables of interest. The occipital pole and postcentral gyrus were included as control regions. RESULTS: Higher AD composite CVR was associated with lower MCI risk. No significant associations between inferior temporal gyrus, occipital pole, or postcentral gyrus CVR and MCI risk, or any regional CVR-combined risk associations were observed. DISCUSSION: CVR in AD signature regions is negatively associated with occurrence of MCI, implicating CVR in AD signature regions as a potential mechanism leading to cognitive impairment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Hypertension , Humans , Alzheimer Disease/pathology , Cognition/physiology , Cognitive Dysfunction/pathology , Hypertension/complications , Magnetic Resonance Imaging , Adult , Clinical Trials as Topic
13.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127979

ABSTRACT

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/pathology , Brain Mapping/methods , Genomics , Brain Neoplasms/pathology
14.
Cureus ; 15(9): e45309, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37846229

ABSTRACT

Lymphomatoid granulomatosis is an Epstein-Barr virus-associated lymphoproliferative B-cell neoplasm that typically involves multiple organ systems. This disease is exceedingly rare when confined to the central nervous system (CNS), usually presenting as a mass lesion or diffuse disease, with no existing standard of care. We present the case of a 67-year-old patient who had a unique and insidious course of isolated CNS lymphomatoid granulomatosis. The disease first presented with cranial neuropathies involving the trigeminal and facial nerves that were responsive to steroids both clinically and radiographically. Two years later, the disease manifested as a parietal mass mimicking high-grade glioma that caused homonymous hemianopsia. The patient underwent craniotomy for resection and was treated with rituximab after surgery. The patient has achieved progression-free survival more than three years after the surgery. Surgical debulking and post-procedural rituximab resulted in favorable survival in a case of isolated CNS lymphomatoid granulomatosis. An intracranial mass preceded by steroid-responsive cranial neuropathies should raise suspicion for lymphoproliferative disorder.

15.
Neuroimage Clin ; 40: 103513, 2023.
Article in English | MEDLINE | ID: mdl-37774646

ABSTRACT

BACKGROUND: Brain perivascular spaces (PVS) are part of the glymphatic system and facilitate clearance of metabolic byproducts. Since enlarged PVS are associated with vascular health, we tested whether intensive systolic blood pressure (SBP) treatment affects PVS structure. METHODS: This is a secondary analysis of the Systolic PRessure INtervention Trial (SPRINT) MRI Substudy: a randomized trial of intensive SBP treatment to goal < 120 mm Hg vs < 140 mm Hg. Participants had increased cardiovascular risk, pre-treatment SBP 130-180, and no clinical stroke, dementia, or diabetes. Brain MRIs acquired at baseline and follow-up were used to automatically segment PVS in the supratentorial white matter and basal ganglia using a Frangi filtering method. PVS volumes were quantified as a fraction of the total tissue volume. The effects of SBP treatment group and major antihypertensive classes on PVS volume fraction were separately tested using linear mixed-effects models while covarying for MRI site, age, sex, Black race, baseline SBP, history of cardiovascular disease (CVD), chronic kidney disease, and white matter hyperintensities (WMH). RESULTS: For 610 participants with sufficient quality MRI at baseline (mean age 67 ± 8, 40 % female, 32 % Black), greater PVS volume fraction was associated with older age, male sex, non-Black race, concurrent CVD, WMH, and brain atrophy. For 381 participants with MRI at baseline and at follow-up (median ± IQR = 3.9 ± 0.4 years), intensive treatment was associated with decreased PVS volume fraction relative to standard treatment (interaction coefficient: -0.029 [-0.055 to -0.0029] p = 0.029). Reduced PVS volume fraction was also associated with exposure to calcium channel blockers (CCB). CONCLUSIONS: PVS enlargement was partially reversed in the intensive SBP treatment group. The association with CCB use suggests that improved vascular compliance may be partly responsible. Improved vascular health may facilitate glymphatic clearance. Clincaltrials.gov: NCT01206062.


Subject(s)
Cardiovascular Diseases , Glymphatic System , Hypertension , Female , Humans , Male , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/pharmacology , Blood Pressure/physiology , Glymphatic System/diagnostic imaging , Hypertension/complications , Middle Aged , Aged , Randomized Controlled Trials as Topic
16.
Addict Biol ; 28(10): e13336, 2023 10.
Article in English | MEDLINE | ID: mdl-37753562

ABSTRACT

Incidence of opioid-related overdoses in the United States has increased dramatically over the past two decades. Despite public emphasis on overdose fatalities, most overdose cases are not fatal. Although there are case reports of amnestic syndromes and acute injury to the hippocampus following non-fatal opioid overdose, the effects of such overdoses on brain structure are poorly understood. Here, we investigated the neuroanatomical correlates of non-fatal opioid overdoses by comparing hippocampal volume in opioid use disorder (OUD) patients who had experienced an opioid overdose (OD; N = 17) with those who had not (NOD; N = 32). Voxel-based morphometry showed lower hippocampal volume in the OD group than in the NOD group, which on post hoc analysis was evident in the left but not the right hippocampus. These findings strengthen the evidence that hippocampal injury is associated with non-fatal opioid overdose, which is hypothesized to underlie overdose-related amnestic syndrome.


Subject(s)
Drug Overdose , Opiate Overdose , Opioid-Related Disorders , Humans , Hippocampus/diagnostic imaging , Opioid-Related Disorders/diagnostic imaging , Temporal Lobe
17.
Alzheimers Dement ; 19(9): 4139-4149, 2023 09.
Article in English | MEDLINE | ID: mdl-37289978

ABSTRACT

INTRODUCTION: Little is known about the epidemiology of brain microbleeds in racially/ethnically diverse populations. METHODS: In the Multi-Ethnic Study of Atherosclerosis, brain microbleeds were identified from 3T magnetic resonance imaging susceptibility-weighted imaging sequences using deep learning models followed by radiologist review. RESULTS: Among 1016 participants without prior stroke (25% Black, 15% Chinese, 19% Hispanic, 41% White, mean age 72), microbleed prevalence was 20% at age 60 to 64.9 and 45% at ≥85 years. Deep microbleeds were associated with older age, hypertension, higher body mass index, and atrial fibrillation, and lobar microbleeds with male sex and atrial fibrillation. Overall, microbleeds were associated with greater white matter hyperintensity volume and lower total white matter fractional anisotropy. DISCUSSION: Results suggest differing associations for lobar versus deep locations. Sensitive microbleed quantification will facilitate future longitudinal studies of their potential role as an early indicator of vascular pathology.


Subject(s)
Atrial Fibrillation , Cerebral Hemorrhage , Humans , Male , Aged , Middle Aged , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Risk Factors , Cognition
18.
JAMA Netw Open ; 6(6): e2316182, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37261829

ABSTRACT

Importance: Little is known about structural brain changes in type 1 diabetes (T1D) and whether there are early manifestations of a neurodegenerative condition like Alzheimer disease (AD) or evidence of premature brain aging. Objective: To evaluate neuroimaging markers of brain age and AD-like atrophy in participants with T1D in the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, identify which brain regions are associated with the greatest changes in patients with T1D, and assess the association between cognition and brain aging indices. Design, Setting, and Participants: This cohort study leveraged data collected during the combined DCCT (randomized clinical trial, 1983-1993) and EDIC (observational study, 1994 to present) studies at 27 clinical centers in the US and Canada. A total of 416 eligible EDIC participants and 99 demographically similar adults without diabetes were enrolled in the magnetic resonance imaging (MRI) ancillary study, which reports cross-sectional data collected in 2018 to 2019 and relates it to factors measured longitudinally in DCCT/EDIC. Data analyses were performed between July 2020 and April 2022. Exposure: T1D diagnosis. Main Outcomes and Measures: Psychomotor and mental efficiency were evaluated using verbal fluency, digit symbol substitution test, trail making part B, and the grooved pegboard. Immediate memory scores were derived from the logical memory subtest of the Wechsler memory scale and the Wechsler digit symbol substitution test. MRI and machine learning indices were calculated to predict brain age and quantify AD-like atrophy. Results: This study included 416 EDIC participants with a median (range) age of 60 (44-74) years (87 of 416 [21%] were older than 65 years) and a median (range) diabetes duration of 37 (30-51) years. EDIC participants had consistently higher brain age values compared with controls without diabetes, indicative of approximately 6 additional years of brain aging (EDIC participants: ß, 6.16; SE, 0.71; control participants: ß, 1.04; SE, 0.04; P < .001). In contrast, AD regional atrophy was comparable between the 2 groups. Regions with atrophy in EDIC participants vs controls were observed mainly in the bilateral thalamus and putamen. Greater brain age was associated with lower psychomotor and mental efficiency among EDIC participants (ß, -0.04; SE, 0.01; P < .001), but not among controls. Conclusions and Relevance: The findings of this study suggest an increase in brain aging among individuals with T1D without any early signs of AD-related neurodegeneration. These increases were associated with reduced cognitive performance, but overall, the abnormal patterns seen in this sample were modest, even after a mean of 38 years with T1D.


Subject(s)
Alzheimer Disease , Diabetes Complications , Diabetes Mellitus, Type 1 , Humans , Adult , Middle Aged , Child , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/diagnostic imaging , Cohort Studies , Cross-Sectional Studies , Brain/diagnostic imaging , Alzheimer Disease/complications , Aging , Atrophy
19.
Neuroimage Rep ; 3(1)2023 Mar.
Article in English | MEDLINE | ID: mdl-37035520

ABSTRACT

Deep learning has been demonstrated effective in many neuroimaging applications. However, in many scenarios, the number of imaging sequences capturing information related to small vessel disease lesions is insufficient to support data-driven techniques. Additionally, cohort-based studies may not always have the optimal or essential imaging sequences for accurate lesion detection. Therefore, it is necessary to determine which imaging sequences are crucial for precise detection. This study introduces a deep learning framework to detect enlarged perivascular spaces (ePVS) and aims to find the optimal combination of MRI sequences for deep learning-based quantification. We implemented an effective lightweight U-Net adapted for ePVS detection and comprehensively investigated different combinations of information from SWI, FLAIR, T1-weighted (T1w), and T2-weighted (T2w) MRI sequences. The experimental results showed that T2w MRI is the most important for accurate ePVS detection, and the incorporation of SWI, FLAIR and T1w MRI in the deep neural network had minor improvements in accuracy and resulted in the highest sensitivity and precision (sensitivity =0.82, precision =0.83). The proposed method achieved comparable accuracy at a minimal time cost compared to manual reading. The proposed automated pipeline enables robust and time-efficient readings of ePVS from MR scans and demonstrates the importance of T2w MRI for ePVS detection and the potential benefits of using multimodal images. Furthermore, the model provides whole-brain maps of ePVS, enabling a better understanding of their clinical correlates compared to the clinical rating methods within only a couple of brain regions.

20.
medRxiv ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865252

ABSTRACT

Background: Brain perivascular spaces (PVS) are part of the glymphatic system and facilitate clearance of metabolic byproducts. Since enlarged PVS are associated with vascular health, we tested whether intensive systolic blood pressure (SBP) treatment affects PVS structure. Methods: This is a secondary analysis of the Systolic PRessure INTervention (SPRINT) Trial MRI Substudy: a randomized trial of intensive SBP treatment to goal < 120 mm Hg vs. < 140 mm Hg. Participants had increased cardiovascular risk, pre-treatment SBP 130-180, and no clinical stroke, dementia, or diabetes. Brain MRIs acquired at baseline and follow-up were used to automatically segment PVS in the supratentorial white matter and basal ganglia using a Frangi filtering method. PVS volumes were quantified as a fraction of the total tissue volume. The effects of SBP treatment group and major antihypertensive classes on PVS volume fraction were separately tested using linear mixed-effects models while covarying for MRI site, age, sex, black race, baseline SBP, history of cardiovascular disease (CVD), chronic kidney disease, and white matter hyperintensities (WMH). Results: For 610 participants with sufficient quality MRI at baseline (mean age 67±8, 40% female, 32% black), greater PVS volume fraction was associated with older age, male sex, non-Black race, concurrent CVD, WMH, and brain atrophy. For 381 participants with MRI at baseline and at follow-up (median = 3.9 years), intensive treatment was associated with decreased PVS volume fraction relative to standard treatment (interaction coefficient: -0.029 [-0.055 to -0.0029] p=0.029). Reduced PVS volume fraction was also associated with exposure to calcium channel blockers (CCB) and diuretics. Conclusions: Intensive SBP lowering partially reverses PVS enlargement. The effects of CCB use suggests that improved vascular compliance may be partly responsible. Improved vascular health may facilitate glymphatic clearance. Clincaltrials.gov : NCT01206062.

SELECTION OF CITATIONS
SEARCH DETAIL
...