Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Cell ; 116(7): e2300069, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679788

ABSTRACT

Polycystic ovary syndrome or PCOS is an endocrine disorder in women of reproductive age. It is a diversified multi factorial disorder and diagnosis is very complicated because of its overlapping symptoms some of which are irregular menstrual cycle, acne in face, excess level of androgen (AE), insulin resistance, obesity, cardiovascular disease, mood disorder and type 2 diabetes (T2DM). PCOS may be caused by hormonal imbalance, genetic and epigenetic vulnerability, hypothalamic and ovarian troubles. PCOS is essentially hyperandrogenimia with oligo-anovulation. This review explains the abnormal regulation of autophagy related genes and proteins in different cells at various stages which leads to the genesis of PCOS. During nutrient starvation cells face stress condition, which it tries to overcome by activating its macroautophagy mechanism and by degrading the cytoplasmic material. This provides energy to the cell facilitating its survival. Downregulation of autophagy related genes in endometria has been observed in PCOS women. PCOS can be managed by maintaining proper lifestyle and medical treatment. Healthy meals and regular exercise can prevent the excessive weight and also reduce the PCOS complications. Medicines such as metformin, clomiphene, and the oral contraceptive pill can also balance the hormonal level. The imbalance in regulation of autophagy genes has been discussed with correlation to PCOS. The different management strategies for PCOS have also been summarized.


Subject(s)
Autophagy , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Humans , Female , Animals
2.
J Genet Eng Biotechnol ; 22(1): 100346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494259

ABSTRACT

BACKGROUND: As the world settles down from the COVID-19 pandemic, many countries are faced with an unexpected outbreak of monkeypox infection. Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is an enveloped, double stranded DNA virus belonging to the Poxviridae family. Presently, we construct and analyze the phylo-geo-network and the corresponding haplogroups. Presently, we performed the haplogroup analysis with their defining mutations and phylogenetic lineage study along with geographical distributions with the aim to understand the evolutionary path of the MPXV across the world. RESULTS: Information about 719 full length genomes of MPXV were collected from GISAID repository and the sequences extracted from NCBI. The alignment of 719 MPXV genomes and their subsequent analysis revealed a total of 1530 segregating sites of which 330 were parsimony informative (PI) sites. The variations had a positive value of Tajima's D statistic indicating some mutations being prevalent and hence balancing selection. A total of 39 haplogroups were observed in the phylo-geo-network and their defining mutations along with the evolutionary path has been discussed. The phylo-geo-network revealed the nodal haplogroup is represented by GISAID ID 13889450, haplogroup A1, an isolate from Germany, having a total of 296 identical sequences in the study incident across 22 countries. The localized evolution is highlighted by country specific sequences and haplogroups. USA had a total of 58 genomes and 13 haplogroups as compared to Peru (89 genomes, 7 haplogroups) and Germany (26 genomes, 6 haplogroups). CONCLUSIONS: The evolution of MPXV can be happening in a localized manner and hence accumulation of variations in the MPXV genomes needs to be monitored in order to be prepared for any possible threats.

3.
Comp Immunol Microbiol Infect Dis ; 98: 102002, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37329681

ABSTRACT

This study is an attempt to extract and analyse the microsatellites or simple sequence repeats (SSRs) from the genomes of eight species of the genus Orthopoxvirus. The average size of genomes included in the study was 205 kb while the GC% was 33% for all but one. A total of 10,584 SSRs and 854 cSSRs were observed. POX2 with the largest genome of 224.499 kb had maximum of 1493 SSRs and 121 cSSRs (compound SSR) while POX7 with the smallest genome of 185.578 kb had minimum incident SSRs and cSSRs at 1181 and 96, respectively. There was significant correlation between genome size and SSR incidence. Di-nucleotide repeats were the most prevalent (57.47%) followed by mono- at 33% and tri- at 8.6%. Mono-nucleotide SSRs were predominantly T (51%) and A (48.4%). A majority of 80.32% SSRs were in the coding region. The three most similar genomes as per heat map POX1, POX7 and POX5 (93% similarity) are adjacent to one another in the phylogenetic tree. Ankyrin/Ankyrin like protein and Kelch protein which are associated with host determination and divergence have the highest SSR density in almost all studied viruses. Thus, SSRs are involved in genome evolution and host determination of viruses.


Subject(s)
Orthopoxvirus , Viruses , Animals , Monkeypox virus/genetics , Orthopoxvirus/genetics , Phylogeny , Systems Biology , Ankyrins/genetics , Microsatellite Repeats/genetics
4.
Gene ; 851: 147037, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36368571

ABSTRACT

Microsatellites or Simple Sequence Repeats (SSRs) are short motif repeat sequences constituting the most hypervariable regions of genomes. Present study extracts and analyzes the SSRs from genomes of 21 virophages. Genomic sequences were retrieved from NCBI and the microsatellite data was extracted through MISA web server. Phylogenetic analysis was performed by using MAFFT and MEGAX as per standardized protocols. The virophages have a circular/linear ds DNA genome of ~17-30 kb size. The GC% of genomes ranged from 26.8 (PSAV13) to 51.1 (PSAV12). A total of 3664 SSRs and 488 cSSR were observed with an average incidence of 174 and 23 respectively. The total SSR incidence in a genome ranged from 120 (PSAV19) to 264 (PSAV14). The cSSR (compound SSR) incidence ranged from 8 (PSAV12) to 47 (PSAV14). Mono-nucleotide repeats are the most incident microsatellites (1129 SSRs) followed by di-nucleotide (1036 SSRs) and tri-nucleotide repeats (368 SSRs). However, the same is not true for individual genomes. There are 14, 16 and 17 genomes which have no incidence of tetra-, penta- and hexa-nucleotide repeats respectively. Mono 'A' repeats having the maximum representation (average ~33 per genome) in mono-nucleotide repeats. For the di-nucleotide repeats, AT/TA motif had the highest frequency (average ~30) distantly followed by AG/GA; and CT/TC (average 5.6 & 5.5 respectively). A total of 1946 SSRs (76%) were found in the coding region. All genomes had a higher SSR density in non-coding as compared to the coding region. There are fifteen genomes which have at least one gene with no SSR. A total of 41 cSSRs with incidence across minimum of two virophages was observed. There were 12 cSSRs which had multiple presence within the same genome. The heat map of the genomes on one hand corroborates the phylogenetic tree with similar sequences (PSAV2, PSAV5, PSAV6, PSAV17 and PSAV18) being positioned together in the phylogenetic analysis while on the other hand it also highlights the diversity of the studied sequences. The conservation of cSSRs across multiple virophages highlights their potential as biomarkers.


Subject(s)
Virophages , Viruses , Virophages/genetics , Phylogeny , Genome, Viral , Viruses/genetics , Microsatellite Repeats/genetics
5.
J Food Sci Technol ; 52(8): 5120-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26243933

ABSTRACT

Oil in water emulsions were produced by the mixture of culled banana resistant starch (CBRS) & soy protein isolate (SPI), mixture of Hylon VII & SPI and SPI with 7.5 and 5 % (w/w) Menhaden fish oil. The emulsions were further freeze- dried obtaining 33 and 50 % oil load microcapsules. The range of particles diameter was 4.11 to 7.25 µm and viscosity was 34.6 to 146.48 cP of the emulsions. Compressibility index (CI), Hasner ratio (HR) and angle of repose (AR) was significantly (p < 0.01) lower of the microcapsules made with starch and protein (CBRS & SPI and Hylon VII & SPI) than that made with protein (SPI) only. Microcapsules composed of CBRS & SPI with 33 % oil load had maximum microencapsulation efficiency (82.49 %) and highest oxidative stability. Muffin made with emulsions containing mixture of CBRS & SPI exhibited less fishy flavour than that containing mixture of Hylon VII & SPI.

SELECTION OF CITATIONS
SEARCH DETAIL
...