Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36230742

ABSTRACT

Ewing sarcoma (EwS) is a rare and highly malignant bone tumor occurring mainly in childhood and adolescence. Physiologically, the bone is a central hub for Ca2+ homeostasis, which is severely disturbed by osteolytic processes in EwS. Therefore, we aimed to investigate how ion transport proteins involved in Ca2+ homeostasis affect EwS pathophysiology. We characterized the expression of 22 candidate genes of Ca2+-permeable or Ca2+-regulated ion channels in three EwS cell lines and found the Ca2+-activated K+ channel KCa2.1 (KCNN1) to be exceptionally highly expressed. We revealed that KCNN1 expression is directly regulated by the disease-driving oncoprotein EWSR1-FL1. Due to its consistent overexpression in EwS, KCNN1 mRNA could be a prognostic marker in EwS. In a large cohort of EwS patients, however, KCNN1 mRNA quantity does not correlate with clinical parameters. Several functional studies including patch clamp electrophysiology revealed no evidence for KCa2.1 function in EwS cells. Thus, elevated KCNN1 expression is not translated to KCa2.1 channel activity in EwS cells. However, we found that the low K+ conductance of EwS cells renders them susceptible to hypoosmotic solutions. The absence of a relevant K+ conductance in EwS thereby provides an opportunity for hypoosmotic therapy that can be exploited during tumor surgery.

2.
Sci Rep ; 11(1): 18330, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526525

ABSTRACT

Non-small cell lung cancer (NSCLC) has a poor prognosis with a 5 year survival rate of only ~ 10%. Important driver mutations underlying NSCLC affect the epidermal growth factor receptor (EGFR) causing the constitutive activation of its tyrosine kinase domain. There are efficient EGFR tyrosine kinase inhibitors (TKIs), but patients develop inevitably a resistance against these drugs. On the other hand, KCa3.1 channels contribute to NSCLC progression so that elevated KCa3.1 expression is a strong predictor of poor NSCLC patient prognosis. The present study tests whether blocking KCa3.1 channels increases the sensitivity of NSCLC cells towards the EGFR TKI erlotinib and overcomes drug resistance. mRNA expression of KCa3.1 channels in erlotinib-sensitive and -resistant NSCLC cells was analysed in datasets from Gene expression omnibus (GEO) and ArrayExpress. We assessed proliferation and migration of NSCLC cells. These (live cell-imaging) experiments were complemented by patch clamp experiments and Western blot analyses. We identified three out of four datasets comparing erlotinib-sensitive and -resistant NSCLC cells which revealed an altered expression of KCa3.1 mRNA in erlotinib-resistant NSCLC cells. Therefore, we evaluated the combined effect of erlotinib and the KCa3.1 channel inhibition with sencapoc. Erlotinib elicits a dose-dependent inhibition of migration and proliferation of NSCLC cells. The simultaneous application of the KCa3.1 channel blocker senicapoc increases the sensitivity towards a low dose of erlotinib (300 nmol/L) which by itself has no effect on migration and proliferation. Partial erlotinib resistance can be overcome by KCa3.1 channel blockade. The sensitivity towards erlotinib as well as the potentiating effect of KCa3.1 blockade is further increased by mimicking hypoxia. Our results suggest that KCa3.1 channel blockade may constitute a therapeutic concept for treating NSCLC and overcome EGFR TKI resistance. We propose that this is due to complementary mechanisms of action of both blockers.


Subject(s)
Erlotinib Hydrochloride/pharmacology , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Protein Kinase Inhibitors/pharmacology , A549 Cells , Carcinoma, Non-Small-Cell Lung , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Profiling , Humans , Lung Neoplasms , Single-Cell Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...