Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1328(2): 140-50, 1997 Sep 04.
Article in English | MEDLINE | ID: mdl-9315611

ABSTRACT

Binding and localization of the vasodilator and antitumor drug coactivator dipyridamole (DIP) and one of its derivatives, RA25, to phospholipid vesicles of DMPC (dimyristoylphosphatidylcholine) and DPPC (dipalmitoylphosphatidylcholine) was studied using fluorescence spectroscopy as well as quenching of fluorescence. The analysis of fluorescence data indicates that neutral dipyridamole binds to the phospholipids in their liquid crystalline phase with an association constant of 950 M(-1) and 1150 M(-1) to DMPC and DPPC, respectively. Protonation of DIP leads to a 3-fold reduction of the association constant. For the gel phospholipid phase, the binding is smaller (a factor of 2), independently of pH, suggesting that the more flexible lipid packing in the liquid crystalline phase facilitates the binding of the drug. The association constant of RA25 neutral form is considerably lower than for DIP, being around 295 M(-1). Fluorescence quenching with nitroxides TEMPO and stearic acid doxyl derivatives suggests the localization of DIP to be closer to the 5th carbon of alkyl chain. The quenching effect of 5-DSA below the lipid phase transition suggests that a strong static quenching may be operative. The quenching effect of 16-DSA is almost as great as that for 5-DSA below the phase transition, being even higher above the phase transition. This effect is probably due to the trans-gauche isomerization of the stearic acid nitroxide, making the encounter of its paramagnetic fragment with the DIP chromophore possible. Our data are consistent with DIP location close to the bilayer surface in the border of hydrophobic-polar heads interface which is similar to the data in micellar systems. In the case of RA25, the drug is in the outer part of the head group interface being much exposed to the aqueous phase and being significantly less accessible to the membrane nitroxide quenchers.


Subject(s)
Dipyridamole/metabolism , Lipid Bilayers/metabolism , Phosphatidylcholines/metabolism , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Biological Transport/drug effects , Dimyristoylphosphatidylcholine/metabolism , Dipyridamole/analogs & derivatives , Dipyridamole/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Models, Chemical , Spectrometry, Fluorescence , Vasodilator Agents/metabolism , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...