Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 200: 107752, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37224628

ABSTRACT

Carbon dioxide (CO2) is considered one of the eco-related key factors that negatively affect global climatic change. Also, CO2 can play an important role in the postharvest quality of the agri-products. In this study, the impact of CO2 on the quality of postharvest onions that were stored at 23 °C for 8 weeks was investigated. The weight loss, phenolic, flavonoid, flavanol, anthocyanin, antioxidant activity, and soluble sugar were analyzed during the study period. The results showed that 20% CO2 treatment was significantly (P > 0.05) more effective than 15% CO2 and control in inhibiting weight loss. Additionally, 20% CO2 treatment significantly retained higher antioxidant enzyme activities such as CAT, APX, and SOD than 15% CO2 and control. During storage, 20% CO2 treatment significantly (P < 0.05) improved glucose, fructose, and sucrose levels by more than 15% CO2 exposure and control groups. Besides the chlorogenic acid, kaempferol and quercetin were significantly (P < 0.05) higher in the 20% CO2 than in the 15% CO2 after 2 weeks of storage. In conclusion, this study's novelty comes from the broad prospects of using CO2 for maximizing the stored onion phytochemical functionality that is usually affected by the room temperature long storage. This will help in the onion shelf-life extension by considering the quality-related attributes.


Subject(s)
Antioxidants , Onions , Carbon Dioxide , Flavonoids , Quercetin
2.
Crit Rev Food Sci Nutr ; 63(28): 9482-9505, 2023.
Article in English | MEDLINE | ID: mdl-35475717

ABSTRACT

The hunt for novel antibiotics has become a global public health imperative due to the rise in multidrug-resistant microorganisms, untreatable infection cases, overuse, and inefficacy of modern antibiotics. Polyphenols are getting much attention in research due to their multiple biological effects; their use as antimicrobial agents is attributed to their activity and that microbes have a hard time developing resistance to these natural compounds. Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. This review focused on polyphenol-protein interactions and the creation of this complex as a possible antibacterial agent. Also, different phenolic interactions on bacterial proteins, efflux pump, cell membrane, bacterial adhesion, toxins, and other bacterial proteins will be explored; these interactions can work in a synergic combination with antibiotics or act alone to assure bacterial inhibition. Additionally, our review will focus on polyphenol-protein interaction as a possible strategy to eradicate bacteria because polyphenols have shown a robust enzyme-inhibitory characteristic and a high tendency to complex with proteins, a response that neutralizes any bactericidal potential.


Subject(s)
Anti-Bacterial Agents , Polyphenols , Humans , Polyphenols/pharmacology , Anti-Bacterial Agents/pharmacology , Phenols , Bacterial Proteins , Bacterial Adhesion
SELECTION OF CITATIONS
SEARCH DETAIL
...