Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(10): 11534-11550, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38496923

ABSTRACT

Synergistic studies were conducted to evaluate the retention potentiality of exfoliating bentonite (EXBEN) as well as its methanol hybridization derivative (Mth/EXBEN) toward Cd(II) ions to be able to verify the effects of the transformation processes. The adsorption characteristics were established by considering the steric and energetic aspects of the implemented advanced equilibrium simulation, specifically the monolayer model with a single energy level. Throughout the full saturation states, the adsorption characteristics of Cd(II) increased substantially to 363.7 mg/g following the methanol hybridized treatment in comparison to EXBEN (293.2 mg/g) as well as raw bentonite (BEN) (187.3 mg/g). The steric analysis indicated a significant rise in the levels of the active sites following the exfoliation procedure [retention site density (Nm) = 162.96 mg/g] and the chemical modification with methanol [retention site density (Nm) = 157.1 mg/g]. These findings clarify the improvement in the potential of Mth/EXBEN to eliminate Cd(II). Furthermore, each open site of Mth/EXBEN has the capacity to bind approximately three ions of Cd(II) in a vertically aligned manner. The energetic investigations, encompassing the Gaussian energy (less than 8 kJ/mol) plus the adsorption energy (less than 40 kJ/mol), provide evidence of the physical sequestration of Cd(II). This process may involve the collaborative impacts of dipole binding forces (ranging from 2 to 29 kJ/mol) and hydrogen binding (less than 30 kJ/mol). The measurable thermodynamic functions, particularly entropy, internal energy, and free enthalpy, corroborate the exothermic and spontaneous nature of Cd(II) retention by Mth/EXBEN, as opposed to those by EXBEN and BE.

2.
RSC Adv ; 14(5): 3104-3121, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38249663

ABSTRACT

Kaolinite can undergo a controlled morphological modification process into exfoliated nanosilicate sheets (EXK) and silicate nanotubes (KNTs). The modified structures were assessed as potential effective adsorbents for the retention of Cs+ ions. The impact of the modification process on the retention properties was assessed based on conventional and advanced equilibrium studies, considering the related steric and energetic functions. The synthetic KNTs exhibit a retention capacity of 249.7 mg g-1 as compared to EXK (199.8 mg g-1), which is significantly higher than raw kaolinite (73.8 mg g-1). The kinetic modeling demonstrates the high effectiveness of the pseudo-first-order kinetic model (R2 > 0.9) to illustrate the sequestration reactions of Cs+ ions by K, EXK, and KNTs. The enhancement effect of the modification processes can be illustrated based on the statistical investigations. The presence of active and vacant receptors enhanced greatly from 19.4 mg g-1 for KA to 40.8 mg g-1 for EXK and 46.9 mg g-1 for KNTs at 298 K. This validates the significant impact of the modification procedures on the specific surface area, reaction interface, and reacting chemical groups' exposure. This also appeared in the enhancement of the reactivity of their surfaces to be able to uptake 10 Cs+ ions by KNTs and 5 ions by EXK as compared to 4 ions by kaolinite. The thermodynamic and energetic parameters (Gaussian energy < 8.6 kJ mol-1; uptake energy < 40 kJ mol-1) show that the physical processes are dominant, which have spontaneous and exothermic properties. The synthetic EXK and KNT structures validate the high elimination performance of the retention of Cs+ either in the existence of additional anions or cations.

3.
ACS Omega ; 8(50): 48166-48180, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144066

ABSTRACT

Exfoliated kaolinite nanosheets (EXK) and their hybridization with ß-cyclodextrin (ß-CD/EXK) were evaluated as potential-enhanced adsorbents of methyl parathion (MP) in synergetic investigations to determine the effects of the different modification procedures. The adsorption behaviors were described on the basis of the energetic steric and energetic factors of the specific advanced equilibrium models (monolayer model of one energy). The functionalization process with ß-CD enhanced the adsorption behaviors of MP considerably to 350.6 mg/g in comparison to EXK (291.7 mg/g) and natural kaolinite (K) (244.7 mg/g). The steric studies revealed a remarkable improvement in the quantities of the existing receptors after exfoliation (Nm = 134.4 mg/g) followed by ß-CD hybridization (Nm = 162.3 mg/g) as compared to K (75.7 mg/g), which was reflected in the determined adsorption capacities of MP. Additionally, each active free site of ß-CD/EXK can adsorb about 3 molecules of MP, which occur in a vertical orientation by types of multimolecular mechanisms. The energetic investigations of Gaussian energy (<8.6 kJ/mol) and adsorption energy (<40 kJ/mol) validate the physical adsorption of MP, which might involve the cooperation of dipole bonding forces, van der Waals, and hydrogen bonding. The properties and entropy values, free enthalpy, and intern energy as the investigated thermodynamic functions declared the exothermic and spontaneous behaviors of the MP adsorption.

4.
Materials (Basel) ; 16(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37512232

ABSTRACT

Natural kaolinite was subjected to a successful exfoliation process into separated kaolinite nanosheets (KNs), followed by hybridization with ß-cyclodextrin biopolymer (ß-CD), forming an advanced bio-nanocomposite (ß-CD/KNs). The synthetic products were evaluated as enhanced delivery structures for oxaliplatin chemotherapy (OXAPN). The hybridization of KNs with ß-CD polymer notably enhanced the loading capacity to 355.3 mg/g (ß-CD/KNs) as compared to 304.9 mg/g for KNs. The loading of OXAPN into both KNs and ß-CD/KNs displayed traditional pseudo-first-order kinetics (R2 > 0.85) and a conventional Langmuir isotherm (R2 = 0.99). The synthetic ß-CD/KNs validates a greater occupied effective site density (98.7 mg/g) than KNs (66.3 mg/g). Furthermore, the values of the n steric parameter (4.7 (KNs) and 3.6 (ß-CD/KNs)) reveal the vertical orientation of the loaded molecules and the loading of them by multi-molecular mechanisms. These mechanisms are mainly physical processes based on the obtained Gaussian energy (<8 KJ/mol) and loading energy (<40 KJ/mol). The release profiles of both KNs and ß-CD/KNs extend for about 120 h, with remarkably faster rates for ß-CD/KNs. According to the release kinetic findings, the release of OXAPN displays non-Fickian transport behavior involving the cooperation of diffusion and erosion mechanisms. The KNs and ß-CD/KNs as free particles showed considerable cytotoxicity and anticancer properties against HCT-116 cancer cell lines (71.4% cell viability (KNs) and 58.83% cell viability (ß-CD/KNs)). Additionally, both KNs and ß-CD/KNs significantly enhanced the OXAPN's cytotoxicity (2.04% cell viability (OXAPN/KNs) and 0.86% cell viability (OXAPN/ß-CD/KNs).

5.
Molecules ; 28(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37446820

ABSTRACT

Natural kaolinite underwent advanced morphological-modification processes that involved exfoliation of its layers into separated single nanosheets (KNs) and scrolled nanoparticles as nanotubes (KNTs). Synthetic nanostructures have been characterized as advanced and effective oxaliplatin-medication (OXAP) delivery systems. The morphological-transformation processes resulted in a remarkable enhancement in the loading capacity to 304.9 mg/g (KNs) and 473 mg/g (KNTs) instead of 29.6 mg/g for raw kaolinite. The loading reactions that occurred by KNs and KNTs displayed classic pseudo-first-order kinetics (R2 > 0.90) and conventional Langmuir isotherms (R2 = 0.99). KNTs exhibit a higher active site density (80.8 mg/g) in comparison to KNs (66.3 mg/g) and raw kaolinite (6.5 mg/g). Furthermore, compared to KNs and raw kaolinite, each site on the surface of KNTs may hold up to six molecules of OXAP (n = 5.8), in comparison with five molecules for KNs. This was accomplished by multi-molecular processes, including physical mechanisms considering both the Gaussian energy (<8 KJ/mol) and the loading energy (<40 KJ/mol). The release activity of OXAP from KNs and KNTs exhibits continuous and regulated profiles up to 100 h, either by KNs or KNTs, with substantially faster characteristics for KNTs. Based on the release kinetic investigations, the release processes have non-Fickian transport-release features, indicating cooperative-diffusion and erosion-release mechanisms. The synthesized structures have a significant cytotoxicity impact on HCT-116 cancer cell lines (KNs (71.4% cell viability and 143.6 g/mL IC-50); KNTs (11.3% cell viability and 114.3 g/mL IC-50). Additionally, these carriers dramatically increase OXAP's cytotoxicity (2.04% cell viability, 15.4 g/mL IC-50 (OXAP/KNs); 0.6% cell viability, 4.5 g/mL IC-50 (OXAP/KNTs)).


Subject(s)
Kaolin , Nanotubes , Kaolin/pharmacology , Kaolin/chemistry , Oxaliplatin/pharmacology , Kinetics , Pharmaceutical Preparations
6.
Nanomaterials (Basel) ; 11(9)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34578652

ABSTRACT

To improve photoelectrochemical (PEC) water splitting, various ZnO nanostructures (nanorods (NRs), nanodiscs (NDs), NRs/NDs, and ZnO NRs decorated with gold nanoparticles) have been manufactured. The pure ZnO nanostructures have been synthesized using the successive ionic-layer adsorption and reaction (SILAR) combined with the chemical bath deposition (CBD) process at various deposition times. The structural, chemical composition, nanomorphological, and optical characteristics have been examined by various techniques. The SEM analysis shows that by varying the deposition time of CBD from 2 to 12 h, the morphology of ZnO nanostructures changed from NRs to NDs. All samples exhibit hexagonal phase wurtzite ZnO with polycrystalline nature and preferred orientation alongside (002). The crystallite size along (002) decreased from approximately 79 to 77 nm as deposition time increased from 2 to 12 h. The bandgap of ZnO NRs was tuned from 3.19 to 2.07 eV after optimizing the DC sputtering time of gold to 4 min. Via regulated time-dependent ZnO growth and Au sputtering time, the PEC performance of the nanostructures was optimized. Among the studied ZnO nanostructures, the highest photocurrent density (Jph) was obtained for the 2 h ZnO NRs. As compared with ZnO NRs, the Jph (7.7 mA/cm2) of 4 min Au/ZnO NRs is around 50 times greater. The maximum values of both IPCE and ABPE are 14.2% and 2.05% at 490 nm, which is closed to surface plasmon absorption for Au NPs. There are several essential approaches to improve PEC efficiency by including Au NPs into ZnO NRs, including increasing visible light absorption and minority carrier absorption, boosting photochemical stability, and accelerating electron transport from ZnO NRs to electrolyte carriers.

7.
Clin Exp Pharmacol Physiol ; 47(10): 1705-1712, 2020 10.
Article in English | MEDLINE | ID: mdl-32558953

ABSTRACT

Psoriasis is an inflammatory skin disorder that is strongly associated with the metabolic syndrome. The sole reliance on clinical examination to guide prognostication and treatment is insufficient at best; accurate diagnostic and prognostic psoriatic molecular biomarkers are needed. Soluble urokinase plasminogen activator receptor (suPAR) has been implicated in inflammation. The aim of this study is to determine whether suPAR plays a role in the pathogenesis of psoriasis and whether an association exists between suPAR levels, disease severity, and other variables like insulin, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). This study also compares the pattern of uPAR staining in healthy vs psoriatic skin: 39 psoriatic and 30 control subjects were included. Two biopsies (affected and unaffected skin) and one biopsy were taken from psoriasis patients and healthy controls, respectively, with uPAR staining of all skin biopsies. Blood samples from all subjects were obtained to determine suPAR, ESR, CRP, and fasting insulin levels. uPAR staining was prominent in unaffected skin from psoriasis patients and healthy individuals vs weak/absent uPAR staining in psoriatic skin. CRP, ESR and suPAR levels were not significantly elevated in the mild psoriasis group compared to healthy controls. The loss of epidermal uPAR is suggestive of its tentative role in the pathogenesis of psoriasis. Patients with mild-moderate psoriasis possibly lack the powerful association attributed to metabolic syndrome in psoriatic patients. Further studies on larger cohorts are needed to ascertain the validity of the mentioned conclusions.


Subject(s)
Psoriasis/blood , Receptors, Urokinase Plasminogen Activator/blood , Adult , Biomarkers/blood , Humans , Male , Middle Aged , Psoriasis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...