Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Genomics ; 42(10): 1169-1178, 2020 10.
Article in English | MEDLINE | ID: mdl-32803704

ABSTRACT

BACKGROUND: Ethiopian sheep living in different climatic zones and having contrasting morphologies are a most promising subject of molecular-genetic research. Elucidating their genetic diversity and genetic structure is critical for designing appropriate breeding and conservation strategies. OBJECTIVE: The study was aimed to investigate genome-wide genetic diversity and population structure of eight Ethiopian sheep populations. METHODS: A total of 115 blood samples were collected from four Ethiopian sheep populations that include Washera, Farta and Wollo (short fat-tailed) and Horro (long fat-tailed). DNA was extracted using Quick-DNA™ Miniprep plus kit. All DNA samples were genotyped using Ovine 50 K SNP BeadChip. To infer genetic relationships of Ethiopian sheep at national, continental and global levels, genotype data on four Ethiopian sheep (Adilo, Arsi-Bale, Menz and Black Head Somali) and sheep from east, north, and south Africa, Middle East and Asia were included in the study as reference. RESULTS: Mean genetic diversity of Ethiopian sheep populations ranged from 0.352 ± 0.14 for Horro to 0.379 ± 0.14 for Arsi-Bale sheep. Population structure and principal component analyses of the eight Ethiopian indigenous sheep revealed four distinct genetic cluster groups according to their tail phenotype and geographical distribution. The short fat-tailed sheep did not represent one genetic cluster group. Ethiopian fat-rump sheep share a common genetic background with the Kenyan fat-tailed sheep. CONCLUSION: The results of the present study revealed the principal component and population structure follows a clear pattern of tail morphology and phylogeography. There is clear signature of admixture among the study Ethiopian sheep populations.


Subject(s)
Genetic Variation/genetics , Genome-Wide Association Study , Sheep/genetics , Tail/anatomy & histology , Animals , Ethiopia , Genome/genetics , Genotype , Humans , Phylogeography , Polymorphism, Single Nucleotide/genetics , Population Groups/genetics , Sheep/anatomy & histology
2.
BMC Plant Biol ; 20(1): 3, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898489

ABSTRACT

BACKGROUND: Continuous storage root formation and bulking (CSRFAB) in sweetpotato is an important trait from agronomic and biological perspectives. Information about the molecular mechanisms underlying CSRFAB traits is lacking. RESULTS: Here, as a first step toward understanding the genetic basis of CSRFAB in sweetpotato, we performed a genome-wide association study (GWAS) using phenotypic data from four distinct developmental stages and 33,068 single nucleotide polymorphism (SNP) and insertion-deletion (indel) markers. Based on Bonferroni threshold (p-value < 5 × 10- 7), we identified 34 unique SNPs that were significantly associated with the complex trait of CSRFAB at 150 days after planting (DAP) and seven unique SNPs associated with discontinuous storage root formation and bulking (DCSRFAB) at 90 DAP. Importantly, most of the loci associated with these identified SNPs were located within genomic regions (using Ipomoea trifida reference genome) previously reported for quantitative trait loci (QTL) controlling similar traits. Based on these trait-associated SNPs, 12 and seven candidate genes were respectively annotated for CSRFAB and DCSRFAB traits. Congruent with the contrasting and inverse relationship between discontinuous and continuous storage root formation and bulking, a DCSRFAB-associated candidate gene regulates redox signaling, involved in auxin-mediated lateral root formation, while CSRFAB is enriched for genes controlling growth and senescence. CONCLUSION: Candidate genes identified in this study have potential roles in cell wall remodeling, plant growth, senescence, stress, root development and redox signaling. These findings provide valuable insights into understanding the functional networks to develop strategies for sweetpotato yield improvement. The markers as well as candidate genes identified in this pioneering research for CSRFAB provide important genomic resources for sweetpotato and other root crops.


Subject(s)
Ipomoea batatas/genetics , Plant Roots/genetics , Plant Roots/metabolism , Genes, Plant , Genome, Plant , Genome-Wide Association Study , Indoleacetic Acids/metabolism , Oxidation-Reduction , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...