Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Radiol ; 93(1107): 20190332, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31944824

ABSTRACT

Proton minibeam therapy (PMBT) is a form of spatially fractionated radiotherapy wherein broad beam radiation is replaced with segmented minibeams-either parallel, planar minibeam arrays generated by a multislit collimator or scanned pencil beams that converge laterally at depth to create a uniform dose layer at the tumor. By doing so, the spatial pattern of entrance dose is considerably modified while still maintaining tumor dose and efficacy. Recent studies using computational modeling, phantom experiments, in vitro and in vivo preclinical models, and early clinical feasibility assessments suggest that unique physical and biological attributes of PMBT can be exploited for future clinical benefit. We outline some of the guiding principle of PMBT in this concise overview of this emerging area of preclinical and clinical research inquiry.


Subject(s)
Creativity , Neoplasms/radiotherapy , Proton Therapy/methods , Absorption, Radiation , Algorithms , Dose Fractionation, Radiation , Feasibility Studies , Humans , Monte Carlo Method , Organ Sparing Treatments , Organs at Risk , Radiobiology , Radiometry
2.
Sci Rep ; 9(1): 1198, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718607

ABSTRACT

Conventional radiation therapy of brain tumors often produces cognitive deficits, particularly in children. We investigated the potential efficacy of merging Orthovoltage X-ray Minibeams (OXM). It segments the beam into an array of parallel, thin (~0.3 mm), planar beams, called minibeams, which are known from synchrotron x-ray experiments to spare tissues. Furthermore, the slight divergence of the OXM array make the individual minibeams gradually broaden, thus merging with their neighbors at a given tissue depth to produce a solid beam. In this way the proximal tissues, including the cerebral cortex, can be spared. Here we present experimental results with radiochromic films to characterize the method's dosimetry. Furthermore, we present our Monte Carlo simulation results for physical absorbed dose, and a first-order biologic model to predict tissue tolerance. In particular, a 220-kVp orthovoltage beam provides a 5-fold sharper lateral penumbra than a 6-MV x-ray beam. The method can be implemented in arc-scan, which may include volumetric-modulated arc therapy (VMAT). Finally, OXM's low beam energy makes it ideal for tumor-dose enhancement with contrast agents such as iodine or gold nanoparticles, and its low cost, portability, and small room-shielding requirements make it ideal for use in the low-and-middle-income countries.


Subject(s)
Radiotherapy/methods , Brain Neoplasms/surgery , Computer Simulation , Gold , Humans , Metal Nanoparticles , Models, Biological , Monte Carlo Method , Radiography/methods , Radiometry/methods , Radiosurgery/methods , Radiotherapy Dosage , X-Ray Therapy/methods , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...