Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 5009, 2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29568069

ABSTRACT

Damage caused by implanted helium (He) is a major concern for material performance in future nuclear reactors. We use a combination of experiments and modeling to demonstrate that amorphous silicon oxycarbide (SiOC) is immune to He-induced damage. By contrast with other solids, where implanted He becomes immobilized in nanometer-scale precipitates, He in SiOC remains in solution and outgasses from the material via atomic-scale diffusion without damaging its free surfaces. Furthermore, the behavior of He in SiOC is not sensitive to the exact concentration of carbon and hydrogen in this material, indicating that the composition of SiOC may be tuned to optimize other properties without compromising resistance to implanted He.

2.
Materials (Basel) ; 12(1)2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30597850

ABSTRACT

The management of radiation defects and insoluble He atoms represent key challenges for structural materials in existing fission reactors and advanced reactor systems. To examine how crystalline/amorphous interface, together with the amorphous constituents affects radiation tolerance and He management, we studied helium bubble formation in helium ion implanted amorphous silicon oxycarbide (SiOC) and crystalline Fe composites by transmission electron microscopy (TEM). The SiOC/Fe composites were grown via magnetron sputtering with controlled length scale on a surface oxidized Si (100) substrate. These composites were subjected to 50 keV He+ implantation with ion doses chosen to produce a 5 at% peak He concentration. TEM characterization shows no sign of helium bubbles in SiOC layers nor an indication of secondary phase formation after irradiation. Compared to pure Fe films, helium bubble density in Fe layers of SiOC/Fe composite is less and it decreases as the amorphous/crystalline SiOC/Fe interface density increases. Our findings suggest that the crystalline/amorphous interface can help to mitigate helium defect generated during implantation, and therefore enhance the resistance to helium bubble formation.

3.
Sci Rep ; 7(1): 3900, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28634322

ABSTRACT

Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bonds and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.

4.
Sci Technol Adv Mater ; 16(6): 065008, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27877850

ABSTRACT

We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performance.

5.
Science ; 327(5973): 1631-4, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20339070

ABSTRACT

Although grain boundaries can serve as effective sinks for radiation-induced defects such as interstitials and vacancies, the atomistic mechanisms leading to this enhanced tolerance are still not well understood. With the use of three atomistic simulation methods, we investigated defect-grain boundary interaction mechanisms in copper from picosecond to microsecond time scales. We found that grain boundaries have a surprising "loading-unloading" effect. Upon irradiation, interstitials are loaded into the boundary, which then acts as a source, emitting interstitials to annihilate vacancies in the bulk. This unexpected recombination mechanism has a much lower energy barrier than conventional vacancy diffusion and is efficient for annihilating immobile vacancies in the nearby bulk, resulting in self-healing of the radiation-induced damage.

6.
J Am Chem Soc ; 132(8): 2516-7, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20136140

ABSTRACT

Carbide films exhibit many unique properties. The development of a versatile and simple technique for the deposition of carbide films will enable a wide range of technological applications. Here we report a cost-effective chemical solution deposition or polymer-assisted deposition method for growing epitaxial carbide (including TiC, VC, and TaC) films. These epitaxial carbide films exhibit structural and physical properties similar to the films grown by vapor deposition methods.

7.
Langmuir ; 24(6): 2695-8, 2008 Mar 18.
Article in English | MEDLINE | ID: mdl-18247637

ABSTRACT

Epitaxial anatase thin films were grown on single-crystal LaAlO3 substrates by a sol-gel process. The epitaxial relationship between TiO2 and LaAlO3 was found to be [100]TiO2||[100]LaAlO3 and (001)TiO2||(001)LaAlO3 based on X-ray diffraction and a high-resolution transmission electron microscopy. The epitaxial anatase films show significantly improved photocatalytic properties, compared with polycrystalline anatase film on fused silica substrate. The increase in the photocatalytic activity of epitaxial anatase films is explained by enhanced charge carrier mobility, which is traced to the decreased grain boundary density in the epitaxial anatase film.


Subject(s)
Aluminum Compounds/chemistry , Lanthanum/chemistry , Membranes, Artificial , Oxides/chemistry , Titanium/chemistry , Gels/chemistry , Photochemistry , Surface Properties , X-Ray Diffraction
8.
Langmuir ; 21(23): 10332-5, 2005 Nov 08.
Article in English | MEDLINE | ID: mdl-16262288

ABSTRACT

Sol-gel-derived Mg(OH)(2) gel was coated onto TiO(2) nanoparticles, and the subsequent thermal topotactic decomposition of the gel formed a highly nanoporous MgO crystalline coating. The specific surface area of the electrode that was prepared from the core-shell-structured TiO(2) nanoparticles significantly increased compared with that of the uncoated TiO(2) electrode. The increase in the specific surface area of the MgO-coated TiO(2) electrode was attributed to the highly nanoporous MgO coating layer that resulted from the topotactic reaction. Dye adsorption behavior and solar cell performance were significantly enhanced by employing the MgO-coated TiO(2) electrode. Optimized coating of a MgO layer on TiO(2) nanoparticles enhanced the energy conversion efficiency as much as 45% compared to that of the uncoated TiO(2) electrode. This indicates that controlling the extrinsic parameters such as the specific surface area is very important to improve the energy conversion efficiency of TiO(2)-based solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...