Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 25(6): 177, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31161265

ABSTRACT

With regard to the harmful effects of heavy metals on human health and the environment, the demand for synthesis and investigation of macromolecules with large capacity of harmful substances sorption is ever greater. Quantum-chemical methods may be applied in structural modeling, prediction, and characterization of such molecules and reactions. Sorption of metal ions (Cu2+, Cd2+, Co2+, and Ni2+) to triethylenetetramine-functionalized copolymer poly(GMA-co-EGDMA)-teta was successfully modeled by quantum chemical calculations, at the B3LYP//6-311++G**/lanl2dz level. Optimized structures of metal complexes were used for calculation of real binding energy of metal ion within the complex (ΔEr). Solvent and hydrolyzation effects were essential for obtaining the objective values. Solvent effect was included in ΔEr by using the total solvation energy for reaction of formation of tetaOH complex (ΔEs1, the first approach) or by using dehydration energy of free metal ion (ΔEs2, the second approach). Experimental results were confirmed in our theoretical analyses (using the second approach). Graphical abstract Theoretical modeling of divalent metal ions sorption on triethylenetetramine-functionalized copolymer poly(GMA-co-EGDMA)-teta.

2.
J Hazard Mater ; 209-210: 99-110, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22284173

ABSTRACT

Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25-70°C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q(max), at pH 1.8 and 25°C was 143 mg g(-1) for PGME2-deta (sample with the highest amino group concentration) while at 70°C Q(max) reached the high value of 198 mg g(-1). Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta.


Subject(s)
Chromium/chemistry , Polyamines/chemistry , Polymers/chemistry , Adsorption , Kinetics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Models, Chemical , Thermodynamics
3.
J Chromatogr A ; 1195(1-2): 1-15, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18501369

ABSTRACT

Inverse gas chromatography (IGC) is an attractive technique for polymer characterization due to possible simultaneous determination of various physicochemical properties of polymer systems merely from retention times of selected sorbates. The technique is especially advantageous to polymers that cannot be characterized by conventional methods. In this review, the utilization of the method for glass transition determination of homopolymers, copolymers and polymer blends is described. Advantages and drawbacks of the IGC method over traditionally used methods for glass transition temperature determination is discussed, along with the most important parameters that influence the precision and accuracy of the glass transition temperature (T(g)) measurements.


Subject(s)
Chromatography, Gas/methods , Glass/chemistry , Polymers/chemistry , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...