Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34722122

ABSTRACT

A seismic microzonation study was conducted to refine the seismic hazard model for the city of Saguenay, Canada. The Quaternary geology underlying Saguenay shows complex glacial and post-glacial stratigraphy with a number of buried valleys filled with fluvioglacial and glaciomarine sediments. High impedance contrast between rock formations and surficial sediments is prone to seismic amplification. To evaluate their applicability, advantages and limitations in capturing the geological specificity of the study area, four site classification methods were applied: the current National Building Code of Canada (NBCC) and Eurocode 8, both mainly based on the average shear-wave velocity for the surficial sediments (V S,avg ) and for the top 30 m (V S,30 ); a method based on the fundamental site period (T 0 ); and a hybrid method based on the combination of V S,30 , T 0 and V S,avg . The study specifically aimed to evaluate the importance of the site classification parameters on the resulting microzonation maps. V S,30 is capable to present the geological and geotechnical site conditions, however, the results may be further improved by considering V s,avg in shallow and T 0 in thick layers of soil sediments as secondary parameters. The T 0 method gives also satisfactory results with T 0 showing a better correlation to V s,30 than to V s,avg . The versatile hybrid method may be challenging to apply in certain cases with its nine different site categories and parameters.

2.
Bull Earthq Eng ; 19(9): 3461-3489, 2021.
Article in English | MEDLINE | ID: mdl-35210984

ABSTRACT

This paper highlights the principal features of the Mw5.4 Zagreb earthquake. Located within the city limits at a depth of 10 km, the earthquake generated a peak ground acceleration of more than 0.2 g and a maximum spectral acceleration of about 0.6 g at 0.1 s in the historic downtown area. The situation was particularly challenging since the event occurred amid a partial Covid-19 lockdown at temperatures close to 0 °C, emphasizing the extensive and complex vulnerability of the local communities and individuals. 27 people were reported severely injured, one of which later died. The surprisingly high economic costs, needed to achieve a full reconstruction of damaged buildings and infrastructure in the affected area, are currently evaluated at more than 10B euros. Description of the organization of the emergency response in the first days and the observed damage to buildings is given with typical examples. The focus is on the performance of older masonry residential and cultural heritage buildings in the historic downtown, their inspection and evaluation of damage to structural and non-structural components. This information provides the basis for understanding of the negative impacts and clarifies the overall context identifying the enablers and barriers to the still ongoing recovery process. It also helps to increase the awareness of the seismic vulnerability of European cities with similar construction practices.

3.
Waste Manag Res ; 26(2): 121-31, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18578151

ABSTRACT

An evaluation of lateral landfill gas migration was carried out at the Saint-Michel Environmental Complex in Montreal, City of Montreal Landfill Site, Canada, between 2003 and 2005. Biogas concentration measurements and gas-pumping tests were conducted in multilevel wells installed in the backfilled overburden beside the landfill site. A migration event recorded in autumn 2004 during the maintenance shutdown of the extraction system was simulated using TOUGH-LGM software. Eleven high-density instantaneous surface monitoring (ISM) surveys of methane were conducted on the test site. Gas fluxes were calculated by geostatistical analyses of ISM data correlated to dynamic flux chamber measurements. Variograms using normal transformed data showed good structure, and kriged estimates were much better than inverse distance weighting, due to highly skewed data. Measurement-based estimates of yearly off-site surface emissions were two orders of magnitude higher than modelled advective lateral methane flux. Nucleodensimeter measurements of the porosity were abnormally high, indicating that the backfill was poorly compacted. Kriged porosity maps correlated well with emission maps and areas with vegetation damage. Pumping tests analysis revealed that vertical permeability was higher than radial permeability. All results suggest that most of the lateral migration and consequent emissions to the atmosphere were due to the existence of preferential flow paths through macropores. In December 2006, two passively vented trenches were constructed on the test site. They were successful in countering lateral migration.


Subject(s)
Gases , Refuse Disposal , Permeability , Quebec , Soil
4.
Ground Water ; 45(2): 158-67, 2007.
Article in English | MEDLINE | ID: mdl-17335480

ABSTRACT

Human activities, whether agricultural, industrial, commercial, or domestic, can contribute to ground water quality deterioration. In order to protect the ground water exploited by a production well, it is essential to develop a good knowledge of the flow system and to adequately delineate the area surrounding the well within which potential contamination sources should be managed. Many methods have been developed to delineate such a wellhead protection area (WHPA). The integration of more information on the geologic and hydrogeologic characteristics of the study area increases the precision of any given WHPA delineation method. From a practical point of view, the WHPA delineation methods allowing the simplest and least expensive integration of the available information should be favored. This paper presents a comparative study in which nine different WHPA delineation methods were applied to a well and a spring in an unconfined granular aquifer and to a well in a confined highly fractured rock aquifer. These methods range from simple approaches to complex computer models. Hydrogeological mapping and numerical modeling with MODFLOW-MODPATH were used as reference methods to respectively compare the delineation of the zone of contribution and the zone of travel obtained from the various WHPA methods. Although applied to simple ground water flow systems, these methods provided a relatively wide range of results. To allow a realistic delineation of the WHPA in aquifers of variable geometry, a WHPA delineation method should ensure a water balance and include observed or calculated regional flow characteristics.


Subject(s)
Water , Reference Standards , United States , United States Environmental Protection Agency
SELECTION OF CITATIONS
SEARCH DETAIL
...