Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
bioRxiv ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38405929

ABSTRACT

Androgen deprivation therapy (ADT) is an effective but not curative treatment for advanced and recurrent prostate cancer (PC). We investigated the mechanisms controlling the response to androgen-deprivation by surgical castration in genetically-engineered mouse models (GEMM) of PC, using high frequency ultrasound imaging to rigorously measure tumor volume. Castration initially causes almost all tumors to shrink in volume, but many tumors subsequently recur within 5-10 weeks. Blockade of tumor necrosis factor (TNF) signaling a few days in advance of castration surgery, using a TNFR2 ligand trap, prevents regression in a PTEN-deficient GEMM. Following tumor regression, a basal stem cell-like population within the tumor increases along with TNF protein levels. Tumor cell lines in culture recapitulate these in vivo observations, suggesting that basal stem cells are the source of TNF. When TNF signaling blockade is administered immediately prior to castration, tumors regress but recurrence is prevented, implying that a late wave of TNF secretion within the tumor, which coincides with the expression of NFkB regulated genes, drives recurrence. The inhibition of signaling downstream of one NFkB-regulated protein, chemokine C-C motif ligand 2 (CCL2), prevents post-castration tumor recurrence, phenocopying post-castration (late) TNF signaling blockade. CCL2 was originally identified as a macrophage chemoattractant and indeed at late times after castration gene sets related to chemotaxis and migration are up-regulated. Importantly, enhanced CCL2 signaling during the tumor recurrence phase coincides with an increase in pro-tumorigenic macrophages and a decrease in CD8 T cells, suggesting that recurrence is driven at least in part by tumor immunosuppression. In summary, we demonstrate that a therapy-induced switch in TNF signaling, a consequence of the increased stem cell-like character of the residual tumor cells surviving ADT, induces an immunosuppressive tumor microenvironment and concomitant tumor recurrence.

2.
Am J Clin Exp Urol ; 11(1): 12-26, 2023.
Article in English | MEDLINE | ID: mdl-36923722

ABSTRACT

Benign prostatic hyperplasia (BPH) is a non-neoplastic proliferative disease producing lower urinary tract symptoms related to the resulting enlarged prostate. BPH is pathologically characterized by hyperplastic growth in both epithelial and stromal compartments. Androgen signaling is essential for prostate function and androgen blockade is the second-line medical therapy to relieve symptoms of BPH. Here we examined the prostates of probasin promoter-driven prolactin (Pb-PRL) transgenic mice, a robust model of BPH that spontaneously develops prostate enlargement, to investigate prostate regression in response to surgical castration. Serial ultrasound imaging demonstrated very uniform self-limited growth of Pb-PRL prostate volume that is consistent with the benign, limited cellular proliferation characteristic of BPH and that contrasts with the highly variable, exponential growth of murine prostate cancer models. Castration elicited only a partial reduction in prostate volume, relative to castration-induced regression of the normal prostate gland. The anti-androgen finasteride induced a diminished reduction of Pb-PRL prostate volume versus castration. The limited extent of Pb-PRL mouse prostate volume regression correlated with the initial volume of the stromal compartment, suggesting a differential sensitivity of the epithelial and stromal compartments to androgen withdrawal. Indeed, two-dimensional morphometric analyses revealed a distinctly reduced rate of regression for the stromal compartment in Pb-PRL mice. The myofibroblast component of the Pb-PRL prostate stroma appeared normal, but the stromal compartment contained more fibroblasts and extracellular collagen deposition. Like normal prostate, the rate of regression of the Pb-PRL prostate was partially dependent on TGFß and TNF signaling, but unlike the normal prostate, the extent of castration-induced regression was not affected by TGFß or TNF blockade. Our studies show that androgen deprivation can effectively reduce the overall volume of hyperplastic prostate, but the stromal compartment is relatively resistant, suggesting additional therapies might be required to offer an effective treatment for the clinical manifestations of BPH.

3.
Cancers (Basel) ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36551505

ABSTRACT

The mainstay treatment for locally advanced, recurrent, or metastatic prostate cancer (PrCa) is androgen deprivation therapy (ADT). ADT causes prostate cancers to shrink in volume, or regress, by inducing epithelial tumor cell apoptosis. In normal, non-neoplastic murine prostate, androgen deprivation via castration induces prostate gland regression that is dependent on TNF signaling. In addition to this direct mechanism of action, castration has also been implicated in an indirect mechanism of prostate epithelial cell death, which has been described as vascular regression. The initiating event is endothelial cell apoptosis and/or increased vascular permeability. This subsequently leads to reduced blood flow and perfusion, and then hypoxia, which may enhance epithelial cell apoptosis. Castration-induced vascular regression has been observed in both normal and neoplastic prostates. We used photoacoustic, power Doppler, and contrast-enhanced ultrasound imaging, and CD31 immunohistochemical staining of the microvasculature to assess vascular integrity in the period immediately following castration, enabling us to test the role of TNF signaling in vascular regression. In two mouse models of androgen-responsive prostate cancer, TNF signaling blockade using a soluble TNFR2 ligand trap reversed the functional aspects of vascular regression as well as structural changes in the microvasculature, including reduced vessel wall thickness, cross-sectional area, and vessel perimeter length. These results demonstrate that TNF signaling is required for vascular regression, most likely by inducing endothelial cell apoptosis and increasing vessel permeability. Since TNF is also the critical death receptor ligand for prostate epithelial cells, we propose that TNF is a multi-purpose, comprehensive signal within the prostate cancer microenvironment that mediates prostate cancer regression following androgen deprivation.

4.
Cancers (Basel) ; 14(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36230652

ABSTRACT

Like BRCA2, MAGEC3 is an ovarian cancer predisposition gene that has been shown to have prognostic significance in ovarian cancer patients. Despite the clinical significance of each gene, no studies have been conducted to assess the clinical significance of their combined expression. We therefore sought to determine the relationship between MAGEC3 and BRCA2 expression in ovarian cancer and their association with patient characteristics and outcomes. Immunohistochemical staining was quantitated on tumor microarrays of human tumor samples obtained from 357 patients with epithelial ovarian cancer to ascertain BRCA2 expression levels. In conjunction with our previously published MAGEC3 expression data, we observed a weak inverse correlation of MAGEC3 with BRCA2 expression (r = −0.15; p < 0.05) in cases with full-length BRCA2. Patients with optimal cytoreduction, loss of MAGEC3, and detectable BRCA2 expression had better overall (median OS: 127.9 vs. 65.3 months, p = 0.035) and progression-free (median PFS: 85.3 vs. 18.8 months, p = 0.002) survival compared to patients that were BRCA2 expressors with MAGEC3 normal levels. Our results suggest that combined expression of MAGEC3 and BRCA2 serves as a better predictor of prognosis than each marker alone.

5.
Nat Commun ; 13(1): 2133, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440548

ABSTRACT

Autoimmune (AI) diseases can affect many organs; however, the prostate has not been considered to be a primary target of these systemic inflammatory processes. Here, we utilize medical record data, patient samples, and in vivo models to evaluate the impact of inflammation, as seen in AI diseases, on prostate tissue. Human and mouse tissues are used to examine whether systemic targeting of inflammation limits prostatic inflammation and hyperplasia. Evaluation of 112,152 medical records indicates that benign prostatic hyperplasia (BPH) prevalence is significantly higher among patients with AI diseases. Furthermore, treating these patients with tumor necrosis factor (TNF)-antagonists significantly decreases BPH incidence. Single-cell RNA-seq and in vitro assays suggest that macrophage-derived TNF stimulates BPH-derived fibroblast proliferation. TNF blockade significantly reduces epithelial hyperplasia, NFκB activation, and macrophage-mediated inflammation within prostate tissues. Together, these studies show that patients with AI diseases have a heightened susceptibility to BPH and that reducing inflammation with a therapeutic agent can suppress BPH.


Subject(s)
Autoimmune Diseases , Prostatic Hyperplasia , Prostatitis , Animals , Autoimmune Diseases/drug therapy , Cell Line , Humans , Hyperplasia , Inflammation/drug therapy , Male , Mice , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/pathology
6.
J Exp Clin Cancer Res ; 40(1): 254, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34384473

ABSTRACT

The incidence of renal cell carcinoma (RCC) is increasing worldwide with an approximate 20% mortality rate. The challenge in RCC is the therapy-resistance. Cancer resistance to treatment employs multiple mechanisms due to cancer heterogeneity with multiple genetic and epigenetic alterations. These changes include aberrant overexpression of (1) anticancer cell death proteins (e.g., survivin/BIRC5), (2) DNA repair regulators (e.g., ERCC6) and (3) efflux pump proteins (e.g., ABCG2/BCRP); mutations and/or deregulation of key (4) oncogenes (e.g., MDM2, KRAS) and/or (5) tumor suppressor genes (e.g., TP5/p53); and (6) deregulation of redox-sensitive regulators (e.g., HIF, NRF2). Foci of tumor cells that have these genetic alterations and/or deregulation possess survival advantages and are selected for survival during treatment. We will review the significance of survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2, MDM2, MDM4, TP5/p53, KRAS and AKT in treatment resistance as the potential therapeutic biomarkers and/or targets in RCC in parallel with our analized RCC-relevant TCGA genetic results from each of these gene/protein molecules. We then present our data to show the anticancer drug FL118 modulation of these protein targets and RCC cell/tumor growth. Finally, we include additional data to show a promising FL118 analogue (FL496) for treating the specialized type 2 papillary RCC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/therapy , Kidney Neoplasms/diagnosis , Kidney Neoplasms/therapy , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/pathology
7.
JCI Insight ; 5(6)2020 03 26.
Article in English | MEDLINE | ID: mdl-32078585

ABSTRACT

Most prostate cancers depend on androgens for growth, and therefore, the mainstay treatment for advanced, recurrent, or metastatic prostate cancer is androgen deprivation therapy (ADT). A prominent side effect in patients receiving ADT is an obese frailty syndrome that includes fat gain and sarcopenia, defined as the loss of muscle function accompanied by reduced muscle mass or quality. Mice bearing Pten-deficient prostate cancers were examined to gain mechanistic insight into ADT-induced sarcopenic obesity. Castration induced fat gain as well as skeletal muscle mass and strength loss. Catabolic TGF-ß family myokine protein levels were increased immediately prior to strength loss, and pan-myokine blockade using a soluble receptor (ActRIIB-Fc) completely reversed the castration-induced sarcopenia. The onset of castration-induced strength and muscle mass loss, as well as the increase in catabolic TGF-ß family myokine protein levels, were coordinately accelerated in tumor-bearing mice relative to tumor-free mice. Notably, growth differentiation factor 11 (GDF11) increased in muscle after castration only in tumor-bearing mice, but not in tumor­free mice. An early surge of GDF11 in prostate tumor tissue and in the circulation suggests that endocrine GDF11 signaling from tumor to muscle is a major driver of the accelerated ADT-induced sarcopenic phenotype. In tumor-bearing mice, GDF11 blockade largely prevented castration-induced strength loss but did not preserve muscle mass, which confirms a primary role for GDF11 in muscle function and suggests an additional role for the other catabolic myokines.


Subject(s)
Androgen Antagonists/toxicity , Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factors/metabolism , Prostatic Neoplasms/metabolism , Sarcopenia/chemically induced , Animals , Male , Mice , Muscle, Skeletal/metabolism
8.
Chemistry ; 25(61): 13848-13854, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31364213

ABSTRACT

A practical, convergent synthesis of prostate-specific membrane antigen (PSMA) targeted imaging agents for MRI, PET, and SPECT of prostate cancer has been developed. In this approach, metals chelated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were placed on the side chains of lysine early in the synthesis to form imaging modules. These are coupled to targeting modules, in this case consisting of the PSMA-binding urea DCL, bonded to an activated linker. The modular approach to targeted molecular imaging agents (TMIAs) offers distinct advantages. By chelating the MRI contrast metal Gd early, it doubles as a protecting group for DOTA. Standard coupling and deprotection steps may be utilized to assemble the modules into peptides, and the need for tri-tert-butyl protection of DOTA requiring removal by strong acid is averted. This enables mild conjugation of the imaging module to a wide variety of targeting agents in the final step. It was further discovered that two labile metals, La3+ or Ce3+ , can be used as placeholders in DOTA during the synthesis, then transmetalated in mild acid by Cu2+ , Ga3+ , In3+ , and Y3+ , metals used in PET/SPECT. This enables the efficient synthesis of nonradioactive analogues of targeted molecular imaging agents that may be transported or stored until needed. A simple and mild two-step transmetalation, involving de-metalation in dilute acid, followed by rapid chelation of the radioactive metal, may be conveniently performed later at the clinic to provide the TMIAs for PET or SPECT.


Subject(s)
Contrast Media/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Metals/chemistry , Prostate-Specific Antigen/chemistry , Prostatic Neoplasms/diagnosis , Humans , Magnetic Resonance Imaging , Male , Positron-Emission Tomography , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/diagnostic imaging
9.
Mol Cancer Res ; 17(4): 845-859, 2019 04.
Article in English | MEDLINE | ID: mdl-30610107

ABSTRACT

Granulocytic myeloid infiltration and resultant enhanced neutrophil elastase (NE) activity is associated with poor outcomes in numerous malignancies. We recently showed that NE expression and activity from infiltrating myeloid cells was high in human prostate cancer xenografts and mouse Pten-null prostate tumors. We further demonstrated that NE directly stimulated human prostate cancer cells to proliferate, migrate, and invade, and inhibition of NE in vivo attenuated xenograft growth. Interestingly, reduced expression of SERPINB1, an endogenous NE inhibitor, also correlates with diminished survival in some cancers. Therefore, we sought to characterize the role of SERPINB1 in prostate cancer. We find that SERPINB1 expression is reduced in human metastatic and locally advanced disease and predicts poor outcome. SERPINB1 is also reduced in Pten-null mouse prostate tumors compared with wild-type prostates, and treatment with sivelestat (SERPINB1 pharmacomimetic) attenuates tumor growth. Knockdown of highly expressed SERPINB1 in nonmalignant prostatic epithelial cells (RWPE-1) increases proliferation, decreases apoptosis, and stimulates expression of epithelial-to-mesenchymal transition markers. In contrast, stable SERPINB1 expression in normally low-expressing prostate cancer cells (C4-2) reduces xenograft growth in vivo. Finally, EZH2-mediated histone (H3K27me3) methylation and DNA methyltransferase-mediated DNA methylation suppress SERPINB1 expression in prostate cancer cells. Analysis of The Cancer Genome Atlas and pyrosequencing demonstrate hypermethylation of the SERPINB1 promoter in prostate cancer compared with normal tissue, and the extent of promoter methylation negatively correlates with SERPINB1 mRNA expression. IMPLICATIONS: Our findings suggest that the balance between SERPINB1 and NE is physiologically important within the prostate and may serve as a biomarker and therapeutic target in prostate cancer.


Subject(s)
Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Serpins/genetics , Serpins/metabolism , Animals , Cell Line, Tumor , Disease Progression , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Histones/genetics , Histones/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Nude , Promoter Regions, Genetic , Prostatic Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transfection
10.
Article in English | MEDLINE | ID: mdl-29782610

ABSTRACT

BACKGROUND: Sarcopenia, the age-related loss of skeletal muscle, is a side effect of androgen deprivation therapy (ADT) for prostate cancer patients. Resident stem cells of skeletal muscle, satellite cells (SCs), are an essential source of progenitors for the growth and regeneration of skeletal muscle. Decreased androgen signaling and deficits in the number and function of SCs are features of aging. Although androgen signaling is known to regulate skeletal muscle, the cellular basis for ADT-induced exacerbation of sarcopenia is unknown. Furthermore, the consequences of androgen deprivation on SC fate in adult skeletal muscle remain largely unexplored. METHODS: We examined SC fate in an androgen-deprived environment using immunofluorescence and fluorescence-activated cell sorting (FACS) with SC-specific markers in young castrated mice. To study the effects of androgen deprivation on SC function and skeletal muscle regenerative capacity, young castrated mice were subjected to experimental regenerative paradigms. SC-derived-cell contributions to skeletal muscle maintenance were examined in castrated Pax7CreER/+; ROSA26mTmG/+ mice. SCs were depleted in Pax7CreER/+; ROSA26DTA/+ mice to ascertain the consequences of SC ablation in sham and castrated skeletal muscles. Confocal immunofluorescence analysis of neuromuscular junctions (NMJs), and assessment of skeletal muscle physiology, contractile properties, and integrity were conducted. RESULTS: Castration led to SC activation, however this did not result in a decline in SC function or skeletal muscle regenerative capacity. Surprisingly, castration induced SC-dependent maintenance of young skeletal muscle. The functional dependence of skeletal muscles on SCs in young castrated mice was demonstrated by an increase in SC-derived-cell fusion within skeletal muscle fibers. SC depletion was associated with further atrophy and functional decline, as well as the induction of partial innervation and the loss of NMJ-associated myonuclei in skeletal muscles from castrated mice. CONCLUSION: The maintenance of skeletal muscles in young castrated mice relies on the cellular contributions of SCs. Considering the well-described age-related decline in SCs, the results in this study highlight the need to devise strategies that promote SC maintenance and activity to attenuate or reverse the progression of sarcopenia in elderly androgen-deprived individuals.

11.
Cancer Sci ; 109(5): 1524-1531, 2018 May.
Article in English | MEDLINE | ID: mdl-29575464

ABSTRACT

Understanding the mechanism of lymph node metastasis, a poor prognostic sign for prostate cancer, and the further dissemination of the disease is important to develop novel treatment strategies. Recent studies have reported that C-C chemokine receptor 7 (CCR7), whose ligand is CCL21, is abundantly expressed in lymph node metastasis and promotes cancer progression. Tumor necrosis factor-α (TNF-α) is chronically produced at low levels within the tumor microenvironment. The aim of this study was to determine whether TNF-α promotes prostate cancer dissemination from metastatic lymph nodes through activation of the CCL21/CCR7 axis. First, human prostate cancer cells were determined to express both TNF-α and CCR7. Second, low concentrations of TNF-α were confirmed to induce CCR7 in prostate cancer cells through phosphorylation of ERK. Finally, CCL21 was found to promote the migration of prostate cancer cells through phosphorylation of the protein kinase p38. Our results suggest that TNF-α leads to the induction of CCR7 expression and that the CCL21/CCR7 axis might increase the metastatic potential of prostate cancer cells in lymph node metastasis.


Subject(s)
Prostatic Neoplasms/pathology , Receptors, CCR7/physiology , Tumor Necrosis Factor-alpha/pharmacology , Cell Line, Tumor , Cell Movement , Chemokine CCL21/physiology , Humans , Lymphatic Metastasis , MAP Kinase Signaling System/physiology , Male , Receptors, CCR7/genetics , Up-Regulation , p38 Mitogen-Activated Protein Kinases/physiology
12.
Mol Cancer Res ; 15(9): 1138-1152, 2017 09.
Article in English | MEDLINE | ID: mdl-28512253

ABSTRACT

Tissue infiltration and elevated peripheral circulation of granulocytic myeloid-derived cells is associated with poor outcomes in prostate cancer and other malignancies. Although myeloid-derived cells have the ability to suppress T-cell function, little is known about the direct impact of these innate cells on prostate tumor growth. Here, it is reported that granulocytic myeloid-derived suppressor cells (MDSC) are the predominant tumor-infiltrating cells in prostate cancer xenografts established in athymic nude mice. MDSCs significantly increased in number in the peripheral circulation as a function of xenograft growth and were successfully depleted in vivo by Gr-1 antibody treatment. Importantly, MDSC depletion significantly decreased xenograft growth. We hypothesized that granulocytic MDSCs might exert their protumorigenic actions in part through neutrophil elastase (ELANE), a serine protease released upon granulocyte activation. Indeed, it was determined that NE is expressed by infiltrating immune cells and is enzymatically active in prostate cancer xenografts and in prostate tumors of prostate-specific Pten-null mice. Importantly, treatment with sivelestat, a small-molecule inhibitor specific for NE, significantly decreased xenograft growth, recapitulating the phenotype of Gr-1 MDSC depletion. Mechanistically, NE activated MAPK signaling and induced MAPK-dependent transcription of the proliferative gene cFOS in prostate cancer cells. Functionally, NE stimulated proliferation, migration, and invasion of prostate cancer cells in vitro IHC on human prostate cancer clinical biopsies revealed coexpression of NE and infiltrating CD33+ MDSCs.Implications: This report suggests that MDSCs and NE are physiologically important mediators of prostate cancer progression and may serve as potential biomarkers and therapeutic targets. Mol Cancer Res; 15(9); 1138-52. ©2017 AACR.


Subject(s)
Leukocyte Elastase/metabolism , Myeloid Cells/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Animals , Cell Culture Techniques , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms/metabolism
13.
Endocrinology ; 157(11): 4461-4472, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27611336

ABSTRACT

First line treatment for recurrent and metastatic prostate cancer is androgen deprivation therapy (ADT). Use of ADT has been increasing in frequency and duration, such that side effects increasingly impact patient quality of life. One of the most significant side effects of ADT is sarcopenia, which leads to a loss of skeletal muscle mass and function, resulting in a clinical disability syndrome known as obese frailty. Using aged mice, we developed a mouse model of ADT-induced sarcopenia that closely resembles the phenotype seen in patients, including loss of skeletal muscle strength, reduced lean muscle mass, and increased adipose tissue. Sarcopenia onset occurred about 6 weeks after castration and was blocked by a soluble receptor (ActRIIB-Fc) that binds multiple TGFß superfamily members, including myostatin, growth differentiation factor 11, activin A, activin B, and activin AB. Analysis of ligand expression in both gastrocnemius and triceps brachii muscles demonstrates that each of these proteins is induced in response to ADT, in 1 of 3 temporal patterns. Specifically, activin A and activin AB levels increase and decline before onset of strength loss at 6 weeks after castration, and myostatin levels increase coincident with the onset of strength loss and then decline. In contrast, activin B and growth differentiation factor 11 levels increase after the onset of strength loss, 8-10 weeks after castration. The observed patterns of ligand induction may represent differential contributions to the development and/or maintenance of sarcopenia. We hypothesize that some or all of these ligands are targets for therapy to ameliorate ADT-induced sarcopenia in prostate cancer patients.


Subject(s)
Castration/adverse effects , Obesity/metabolism , Sarcopenia/metabolism , Transforming Growth Factor beta/metabolism , Activin Receptors, Type II/metabolism , Activins/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factors/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle Strength/genetics , Muscle Strength/physiology , Myostatin/metabolism , Obesity/etiology
14.
J Biomed Opt ; 21(6): 66019, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27367255

ABSTRACT

There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.


Subject(s)
Diagnostic Imaging/methods , Photoacoustic Techniques , Prostate-Specific Antigen/chemistry , Prostatic Neoplasms/diagnostic imaging , Diagnostic Imaging/instrumentation , Humans , Indoles/chemistry , Infrared Rays , Male
15.
Adv Drug Deliv Rev ; 98: 35-40, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26724249

ABSTRACT

Treatment for solid tumor malignancies, which constitute the majority of human cancers, is still dominated by surgery and radiotherapies. This is especially true for many localized solid tumors, which are often curable with these treatments. However, metastatic cancers are beyond the reach of these therapies, and many localized cancers that are initially treated with surgery and radiation will recur and metastasize. Thus, for over 60years there has been a concerted effort to develop effective drug treatments for metastatic cancers. Combination therapies are an increasingly important part of the anti-cancer drug armamentarium. In the case of cytotoxic chemotherapy, multi-drug regimens rapidly became the norm, as the earliest single agents were relatively ineffective. In contrast to chemotherapy, where combination therapies were required in order to achieve treatment efficacy, for both hormonal and targeted therapies the impetus to move toward the use of combination therapies is to prevent or reverse the development of treatment resistance. In addition, emerging evidence suggests that combination therapy may also improve cancer treatment by neutralizing an emerging treatment side effect termed therapy-induced metastasis, which accompanies some effective single agent therapies. Finally, although gene therapy is still far from use in the clinic, we propose that combination therapies may enhance its effectiveness.


Subject(s)
Antineoplastic Agents/administration & dosage , Genetic Therapy , Neoplasms/therapy , Animals , Antineoplastic Agents/therapeutic use , Apoptosis , Combined Modality Therapy , Humans
18.
Oncotarget ; 6(28): 25726-40, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26327448

ABSTRACT

The dramatic responses tumors display to targeted therapies are limited by acquired or pre-existing mechanisms of therapy resistance. We recently discovered that androgen receptor blockade by the anti-androgen enzalutamide paradoxically enhanced metastasis and that these pro-metastatic effects were mediated by the chemoattractant CCL2. CCL2 is regulated by TNF, which is negatively regulated by androgen signaling. Thus, we asked if TNF mediates the pro-metastatic effects of enzalutamide. We found that androgen withdrawal or enzalutamide induced TNF mRNA and protein secretion in castration resistant prostate cancer (C4-2) cells, but not in macrophage-like (THP1) or myofibroblast-like (WPMY1) cells. Androgen deprivation therapy (ADT) induced autocrine CCL2 expression in C4-2 (as well as a murine CRPC cell line), while exogenous TNF induced CCL2 in THP1 and WPMY1. TNF was most potent in myofibroblast cultures, suggesting ADT induces CCL2 via paracrine interactions within the tumor microenvironment. A soluble TNF receptor (etanercept) blocked enzalutamide-induced CCL2 protein secretion and mRNA, implying dependence on secreted TNF. A small molecule inhibitor of CCR2 (the CCL2 receptor) significantly reduced TNF induced migration, while etanercept inhibited enzalutamide-induced migration and invasion of C4-2. Analysis of human prostate cancers suggests that a TNF-CCL2 paracrine loop is induced in response to ADT and might account for some forms of prostate cancer therapy resistance.


Subject(s)
Androgen Antagonists/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Myofibroblasts/drug effects , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Tumor Necrosis Factor-alpha/metabolism , Animals , Benzamides , Cell Line, Tumor , Cell Movement/drug effects , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Coculture Techniques , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Myofibroblasts/metabolism , Myofibroblasts/pathology , Neoplasm Invasiveness , Neoplasm Metastasis , Nitriles , Paracrine Communication/drug effects , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/metabolism , Time Factors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation
19.
BMC Urol ; 15: 97, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26391476

ABSTRACT

BACKGROUND: Genetically engineered mouse models are essential to the investigation of the molecular mechanisms underlying human prostate pathology and the effects of therapy on the diseased prostate. Serial in vivo volumetric imaging expands the scope and accuracy of experimental investigations of models of normal prostate physiology, benign prostatic hyperplasia and prostate cancer, which are otherwise limited by the anatomy of the mouse prostate. Moreover, accurate imaging of hyperplastic and tumorigenic prostates is now recognized as essential to rigorous pre-clinical trials of new therapies. Bioluminescent imaging has been widely used to determine prostate tumor size, but is semi-quantitative at best. Magnetic resonance imaging can determine prostate volume very accurately, but is expensive and has low throughput. We therefore sought to develop and implement a high throughput, low cost, and accurate serial imaging protocol for the mouse prostate. METHODS: We developed a high frequency ultrasound imaging technique employing 3D reconstruction that allows rapid and precise assessment of mouse prostate volume. Wild-type mouse prostates were examined (n = 4) for reproducible baseline imaging, and treatment effects on volume were compared, and blinded data analyzed for intra- and inter-operator assessments of reproducibility by correlation and for Bland-Altman analysis. Examples of benign prostatic hyperplasia mouse model prostate (n = 2) and mouse prostate implantation of orthotopic human prostate cancer tumor and its growth (n = ) are also demonstrated. RESULTS: Serial measurement volume of the mouse prostate revealed that high frequency ultrasound was very precise. Following endocrine manipulation, regression and regrowth of the prostate could be monitored with very low intra- and interobserver variability. This technique was also valuable to monitor the development of prostate growth in a model of benign prostatic hyperplasia. Additionally, we demonstrate accurate ultrasound image-guided implantation of orthotopic tumor xenografts and monitoring of subsequent tumor growth from ~10 to ~750 mm(3) volume. DISCUSSION: High frequency ultrasound imaging allows precise determination of normal, neoplastic and hyperplastic mouse prostate. Low cost and small image size allows incorporation of this imaging modality inside clean animal facilities, and thereby imaging of immunocompromised models. 3D reconstruction for volume determination is easily mastered, and both small and large relative changes in volume are accurately visualized. Ultrasound imaging does not rely on penetration of exogenous imaging agents, and so may therefore better measure poorly vascularized or necrotic diseased tissue, relative to bioluminescent imaging (IVIS). CONCLUSIONS: Our method is precise and reproducible with very low inter- and intra-observer variability. Because it is non-invasive, mouse models of prostatic disease states can be imaged serially, reducing inter-animal variability, and enhancing the power to detect small volume changes following therapeutic intervention.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Prostate/diagnostic imaging , Prostatic Hyperplasia/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Ultrasonography/methods , Animals , Diagnosis, Differential , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Reproducibility of Results , Sensitivity and Specificity
20.
Oncotarget ; 6(14): 12326-39, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25940439

ABSTRACT

High fat dietary intake may increase the risk of prostate cancer (PCa). Pre-adipocytes, one of the basic components in the tumor microenvironment (TME), are capable of differentiating into adipose tissues and play key roles to affect PCa progression. Here we found the pre-adipocytes could be recruited more easily to PCa than its surrounding normal prostate tissue. In vitro co-culture system also confirmed PCa has a better capacity than normal prostate to recruit pre-adipocytes. The consequences of recruiting more pre-adipocytes may then increase PCa cell invasion. Mechanism dissection revealed infiltrating pre-adipocytes might function through down-regulation of the androgen receptor (AR) via modulation of miR-301a, and then increase PCa cell invasion via induction of TGF-ß1/Smad/MMP9 signals. The mouse model with orthotopically xenografted PCa CWR22Rv1 cells with pre-adipocytes also confirmed that infiltrating pre-adipocytes could increase PCa cell invasion via suppressing AR signaling. Together, our results reveal a new mechanism showing pre-adipocytes in the prostate TME can be recruited to PCa to increase PCa metastasis via modulation of the miR-301a/AR/TGF-ß1/Smad/MMP9 signals. Targeting this newly identified signaling may help us to better inhibit PCa metastasis.


Subject(s)
Adipocytes/pathology , Neoplasm Invasiveness/pathology , Prostatic Neoplasms/pathology , Signal Transduction , Stem Cells/pathology , Tumor Microenvironment/physiology , Animals , Blotting, Western , Cell Line , Coculture Techniques , Humans , Immunohistochemistry , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Nude , MicroRNAs/metabolism , Neoplasm Metastasis , Real-Time Polymerase Chain Reaction , Receptors, Androgen/metabolism , Signal Transduction/physiology , Smad Proteins/metabolism , Transfection , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...