Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Animals (Basel) ; 14(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998041

ABSTRACT

The gastrointestinal tract has a pivotal role in nutrient absorption, immune function, and overall homeostasis. The ileum segment of the small intestine plays respective roles in nutrient breakdown and absorption. The purpose of this study was to investigate the impact of heat-induced oxidative stress and the potential mitigating effects of an astaxanthin antioxidant treatment on the ileum of broilers. By comparing the growth performance and gene expression profiles among three groups-thermal neutral, heat stress, and heat stress with astaxanthin-thermal neutral temperature conditions of 21-22 °C and heat stress temperature of 32-35 °C, this research aims to elucidate the role of astaxanthin in supporting homeostasis and cellular protection in the ileum. Results showed both treatments under heat stress experienced reduced growth performance, while the group treated with astaxanthin showed a slightly lesser decline. Results further showed the astaxanthin treatment group significantly upregulated in the cytoprotective gene expression for HSF2, SOD2, GPX3, and TXN, as well as the upregulation of epithelial integrity genes LOX, CLDN1, and MUC2. In conclusion, our experimental findings demonstrate upregulation of cytoprotective and epithelial integrity genes, suggesting astaxanthin may effectively enhance the cellular response to heat stress to mitigate oxidative damage and contribute to cytoprotective capacity.

2.
bioRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37662282

ABSTRACT

Fragments derived from small RNAs such as small nucleolar RNAs hold biological relevance. However, they remain poorly understood, calling for more comprehensive methods for analysis. We developed sRNAfrag, a standardized workflow and set of scripts to quantify and analyze sRNA fragmentation of any biotype. In a benchmark, it is able to detect loci of mature microRNAs fragmented from precursors and, utilizing multi-mapping events, the conserved 5' seed sequence of miRNAs which we believe may extraoplate to other small RNA fragments. The tool detected 1411 snoRNA fragment conservation events between 2/4 eukaryotic species, providing the opportunity to explore motifs and fragmentation patterns not only within species, but between. Availability: https://github.com/kenminsoo/sRNAfrag.

3.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108716

ABSTRACT

High-risk benign breast tumors are known to develop breast cancer at high rates. However, it is still controversial whether they should be removed during diagnosis or followed up until cancer development becomes evident. Therefore, this study sought to identify circulating microRNAs (miRNAs) that could serve as detection markers of cancers arising from high-risk benign tumors. Small RNA-seq was performed using plasma samples collected from patients with early-stage breast cancer (CA) and high-risk (HB), moderate-risk (MB), and no-risk (Be) benign breast tumors. Proteomic profiling of CA and HB plasma was performed to investigate the underlying functions of the identified miRNAs. Our findings revealed that four miRNAs, hsa-mir-128-3p, hsa-mir-421, hsa-mir-130b-5p, and hsa-mir-28-5p, were differentially expressed in CA vs. HB and had diagnostic power to discriminate CA from HB with AUC scores greater than 0.7. Enriched pathways based on the target genes of these miRNAs indicated their association with IGF-1. Furthermore, the Ingenuity Pathway Analysis performed on the proteomic data revealed that the IGF-1 signaling pathway was significantly enriched in CA vs. HB. In conclusion, these findings suggest that these miRNAs could potentially serve as biomarkers for detecting early-stage breast cancer from high-risk benign tumors by monitoring IGF signaling-induced malignant transformation.


Subject(s)
Breast Neoplasms , Circulating MicroRNA , MicroRNAs , Humans , Female , Circulating MicroRNA/genetics , Insulin-Like Growth Factor I/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Proteomics , Gene Expression Profiling , MicroRNAs/metabolism , Biomarkers
4.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38243693

ABSTRACT

Fragments derived from small RNAs such as small nucleolar RNAs are biologically relevant but remain poorly understood. To address this gap, we developed sRNAfrag, a modular and interoperable tool designed to standardize the quantification and analysis of small RNA fragmentation across various biotypes. The tool outputs a set of tables forming a relational database, allowing for an in-depth exploration of biologically complex events such as multi-mapping and RNA fragment stability across different cell types. In a benchmark test, sRNAfrag was able to identify established loci of mature microRNAs solely based on sequencing data. Furthermore, the 5' seed sequence could be rediscovered by utilizing a visualization approach primarily applied in multi-sequence-alignments. Utilizing the relational database outputs, we detected 1411 snoRNA fragment conservation events between two out of four eukaryotic species, providing an opportunity to explore motifs through evolutionary time and conserved fragmentation patterns. Additionally, the tool's interoperability with other bioinformatics tools like ViennaRNA amplifies its utility for customized analyses. We also introduce a novel loci-level variance-score which provides insights into the noise around peaks and demonstrates biological relevance by distinctly separating breast cancer and neuroblastoma cell lines after dimension reduction when applied to small nucleolar RNAs. Overall, sRNAfrag serves as a versatile foundation for advancing our understanding of small RNA fragments and offers a functional foundation to further small RNA research. Availability: https://github.com/kenminsoo/sRNAfrag.


Subject(s)
MicroRNAs , MicroRNAs/genetics , Sequence Analysis, RNA/methods , RNA, Small Nucleolar/genetics , Computational Biology/methods , Sequence Alignment
5.
Int J Mol Sci ; 25(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38203541

ABSTRACT

The study of liquid biopsy with plasma samples is being conducted to identify biomarkers for clinical use. Exosomes, containing nucleic acids and metabolites, have emerged as possible sources for biomarkers. To evaluate the effectiveness of exosomes over plasma, we analyzed the small non-coding RNAs (sncRNAs) and metabolites extracted from exosomes in comparison to those directly extracted from whole plasma under both fasting and non-fasting conditions. We found that sncRNA profiles were not affected by fasting in either exosome or plasma samples. Our results showed that exosomal sncRNAs were found to have more consistent profiles. The plasma miRNA profiles contained high concentrations of cell-derived miRNAs that were likely due to hemolysis. We determined that certain metabolites in whole plasma exhibited noteworthy concentration shifts in relation to fasting status, while others did not. Here, we propose that (1) fasting is not required for a liquid biopsy study that involves both sncRNA and metabolomic profiling, as long as metabolites that are not influenced by fasting status are selected, and (2) the utilization of exosomal RNAs promotes robust and consistent findings in plasma samples, mitigating the impact of batch effects derived from hemolysis. These findings advance the optimization of liquid biopsy methodologies for clinical applications.


Subject(s)
Exosomes , MicroRNAs , RNA, Small Untranslated , Humans , Hemolysis , Fasting , Biomarkers , Liquid Biopsy , MicroRNAs/genetics
6.
Mol Ther Oncolytics ; 26: 207-225, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35892120

ABSTRACT

Transfer RNA (tRNA)-derived fragment (tRDF) is a novel small non-coding RNA that presents in different types of cancer. The comprehensive understanding of tRDFs in non-small cell lung cancer remains largely unknown. In this study, 1,550 patient samples of non-small cell lung cancer (NSCLC) were included, and 52 tRDFs with four subtypes were identified. Six tRDFs were picked as diagnostic signatures based on the tRDFs expression patterns, and area under the curve (AUC) in independent validations is up to 0.90. Two signatures were validated successfully in plasma samples, and six signatures confirmed the consistency of distinguished expression in NSCLC cell lines. Ten tRDFs along with independent risk scores can be used to predict survival outcomes by stages; 5a_tRF-Ile-AAT/GAT can be a prognosis biomarker for early stage. Association analysis of tRDFs-signatures-correlated mRNAs and microRNA (miRNA) were targeted to the cell cycle and oocyte meiosis signaling pathways. Five tRDFs were assessed to associate with PD-L1 immune checkpoint and correlated with the genes that target in PD-L1 checkpoint signaling pathway. Our study is the first to provide a comprehensive analysis of tRDFs in lung cancer, including four subtypes of tRDFs, investigating the diagnostic and prognostic values, and demonstrated their biological function and transcriptional role as well as potential immune therapeutic value.

7.
Genome Biol ; 22(1): 332, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34872606

ABSTRACT

BACKGROUND: Cytosine modifications in DNA such as 5-methylcytosine (5mC) underlie a broad range of developmental processes, maintain cellular lineage specification, and can define or stratify types of cancer and other diseases. However, the wide variety of approaches available to interrogate these modifications has created a need for harmonized materials, methods, and rigorous benchmarking to improve genome-wide methylome sequencing applications in clinical and basic research. Here, we present a multi-platform assessment and cross-validated resource for epigenetics research from the FDA's Epigenomics Quality Control Group. RESULTS: Each sample is processed in multiple replicates by three whole-genome bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl), enzymatic deamination method (EMSeq), targeted methylation sequencing (Illumina Methyl Capture EPIC), single-molecule long-read nanopore sequencing from Oxford Nanopore Technologies, and 850k Illumina methylation arrays. After rigorous quality assessment and comparison to Illumina EPIC methylation microarrays and testing on a range of algorithms (Bismark, BitmapperBS, bwa-meth, and BitMapperBS), we find overall high concordance between assays, but also differences in efficiency of read mapping, CpG capture, coverage, and platform performance, and variable performance across 26 microarray normalization algorithms. CONCLUSIONS: The data provided herein can guide the use of these DNA reference materials in epigenomics research, as well as provide best practices for experimental design in future studies. By leveraging seven human cell lines that are designated as publicly available reference materials, these data can be used as a baseline to advance epigenomics research.


Subject(s)
Epigenesis, Genetic , Epigenomics/methods , Quality Control , 5-Methylcytosine , Algorithms , CpG Islands , DNA/genetics , DNA Methylation , Epigenome , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Sequence Alignment , Sequence Analysis, DNA/methods , Sulfites , Whole Genome Sequencing/methods
9.
Proc Natl Acad Sci U S A ; 117(52): 33466-33473, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318203

ABSTRACT

Rare biallelic BLM gene mutations cause Bloom syndrome. Whether BLM heterozygous germline mutations (BLM+/-) cause human cancer remains unclear. We sequenced the germline DNA of 155 mesothelioma patients (33 familial and 122 sporadic). We found 2 deleterious germline BLM+/- mutations within 2 of 33 families with multiple cases of mesothelioma, one from Turkey (c.569_570del; p.R191Kfs*4) and one from the United States (c.968A>G; p.K323R). Some of the relatives who inherited these mutations developed mesothelioma, while none with nonmutated BLM were affected. Furthermore, among 122 patients with sporadic mesothelioma treated at the US National Cancer Institute, 5 carried pathogenic germline BLM+/- mutations. Therefore, 7 of 155 apparently unrelated mesothelioma patients carried BLM+/- mutations, significantly higher (P = 6.7E-10) than the expected frequency in a general, unrelated population from the gnomAD database, and 2 of 7 carried the same missense pathogenic mutation c.968A>G (P = 0.0017 given a 0.00039 allele frequency). Experiments in primary mesothelial cells from Blm+/- mice and in primary human mesothelial cells in which we silenced BLM revealed that reduced BLM levels promote genomic instability while protecting from cell death and promoted TNF-α release. Blm+/- mice injected intraperitoneally with asbestos had higher levels of proinflammatory M1 macrophages and of TNF-α, IL-1ß, IL-3, IL-10, and IL-12 in the peritoneal lavage, findings linked to asbestos carcinogenesis. Blm+/- mice exposed to asbestos had a significantly shorter survival and higher incidence of mesothelioma compared to controls. We propose that germline BLM+/- mutations increase the susceptibility to asbestos carcinogenesis, enhancing the risk of developing mesothelioma.


Subject(s)
Asbestosis/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Mesothelioma/genetics , RecQ Helicases/genetics , Adult , Aged , Animals , Asbestos, Crocidolite , Family , Female , Genomic Instability , Heterozygote , Humans , Incidence , Inflammation/pathology , Male , Mice , Middle Aged
10.
Molecules ; 25(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096860

ABSTRACT

Lipids are essential components of cell structure and play important roles in signal transduction between cells and body metabolism. With the continuous development and innovation of lipidomics technology, many studies have shown that the relationship between lipids and cancer is steadily increasing, involving cancer occurrence, proliferation, migration, and apoptosis. Breast cancer has seriously affected the safety and quality of life of human beings worldwide and has become a significant public health problem in modern society, with an especially high incidence among women. Therefore, the issue has inspired scientific researchers to study the link between lipids and breast cancer. This article reviews the research progress of lipidomics, the biological characteristics of lipid molecules, and the relationship between some lipids and cancer drug resistance. Furthermore, this work summarizes the lipid molecules related to breast cancer diagnosis and prognosis, and then it clarifies their impact on the occurrence and development of breast cancer The discussion revolves around the current research hotspot long-chain non-coding RNAs (lncRNAs), summarizes and explains their impact on tumor lipid metabolism, and provides more scientific basis for future cancer research studies.


Subject(s)
Breast Neoplasms/diagnosis , Lipids/chemistry , Female , Humans , Molecular Structure
11.
BMC Med Inform Decis Mak ; 20(Suppl 9): 223, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32967667

ABSTRACT

BACKGROUND: Prostate cancer is a very common and highly fatal in men. Current non-invasive detection methods like serum biomarker are unsatisfactory. Biomarkers with high accuracy for diagnostic of prostate cancer are urgently needed. Many lipid species have been found related to various cancers. The purpose of our study is to explore the diagnostic value of lipids for prostate cancer. RESULTS: Using triple quadruple liquid chromatography electrospray ionization tandem mass spectrometry, we performed lipidomics profiling of 367 lipids on a total 114 plasma samples from 30 patients with prostate cancer, 38 patients with benign prostatic hyperplasia (BPH), and 46 male healthy controls to evaluate the lipids as potential biomarkers in the diagnosis of prostate cancer. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used to construct the potential mechanism pathway. After statistical analysis, five lipids were identified as a panel of potential biomarkers for the detection of prostate cancer between prostate cancer group and the BPH group; the sensitivity, specificity, and area under curve (AUC) of the combination of these five lipids were 73.3, 81.6%, and 0.800, respectively. We also identified another panel of five lipids in distinguishing between prostate cancer group and the control group with predictive values of sensitivity at 76.7%, specificity at 80.4%, and AUC at 0.836, respectively. The glycerophospholipid metabolism pathway of the selected lipids was considered as the target pathway. CONCLUSIONS: Our study indicated that the identified plasma lipid biomarkers have potential in the diagnosis of prostate cancer.


Subject(s)
Lipids/blood , Prostatic Neoplasms/diagnosis , Aged , Biomarkers, Tumor/blood , Humans , Male , Metabolic Networks and Pathways , Middle Aged , Prostatic Neoplasms/blood
12.
J Clin Oncol ; : JCO2018790352, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30376426

ABSTRACT

PURPOSE: We hypothesized that four criteria could help identify malignant mesotheliomas (MMs) most likely linked to germline mutations of BAP1 or of other genes: family history of MM, BAP1-associated cancers, or multiple malignancies; or age younger than 50 years. PATIENTS AND METHODS: Over the course of 7 years, 79 patients with MM met the four criteria; 22 of the 79 (28%) reported possible asbestos exposure. They were screened for germline BAP1 mutations by Sanger sequencing and by targeted next-generation sequencing (tNGS) for germline mutations in 55 additional cancer-linked genes. Deleterious mutations detected by tNGS were validated by Sanger sequencing. RESULTS: Of the 79 patients, 43 (16 probands and 27 relatives) had deleterious germline BAP1 mutations. The median age at diagnosis was 54 years and median survival was 5 years. Among the remaining 36 patients with no BAP1 mutation, median age at diagnosis was 45 years, median survival was 9 years, and 12 had deleterious mutations of additional genes linked to cancer. When compared with patients with MMs in the SEER cohort, median age at diagnosis (72 years), median survival for all MM stages (8 months), and stage I (11 months) were significantly different from the 79 patients with MM in the current study ( P < .0001). CONCLUSION: We provide criteria that help identify a subset of patients with MM who had significantly improved survival. Most of these patients were not aware of asbestos exposure and carried either pathogenic germline mutations of BAP1 or of additional genes linked to cancer, some of which may have targeted-therapy options. These patients and their relatives are susceptible to development of additional cancers; therefore, genetic counseling and cancer screening should be considered.

13.
Nature ; 546(7659): 549-553, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28614305

ABSTRACT

BRCA1-associated protein 1 (BAP1) is a potent tumour suppressor gene that modulates environmental carcinogenesis. All carriers of inherited heterozygous germline BAP1-inactivating mutations (BAP1+/-) developed one and often several BAP1-/- malignancies in their lifetime, mostly malignant mesothelioma, uveal melanoma, and so on. Moreover, BAP1-acquired biallelic mutations are frequent in human cancers. BAP1 tumour suppressor activity has been attributed to its nuclear localization, where it helps to maintain genome integrity. The possible activity of BAP1 in the cytoplasm is unknown. Cells with reduced levels of BAP1 exhibit chromosomal abnormalities and decreased DNA repair by homologous recombination, indicating that BAP1 dosage is critical. Cells with extensive DNA damage should die and not grow into malignancies. Here we discover that BAP1 localizes at the endoplasmic reticulum. Here, it binds, deubiquitylates, and stabilizes type 3 inositol-1,4,5-trisphosphate receptor (IP3R3), modulating calcium (Ca2+) release from the endoplasmic reticulum into the cytosol and mitochondria, promoting apoptosis. Reduced levels of BAP1 in BAP1+/- carriers cause reduction both of IP3R3 levels and of Ca2+ flux, preventing BAP1+/- cells that accumulate DNA damage from executing apoptosis. A higher fraction of cells exposed to either ionizing or ultraviolet radiation, or to asbestos, survive genotoxic stress, resulting in a higher rate of cellular transformation. We propose that the high incidence of cancers in BAP1+/- carriers results from the combined reduced nuclear and cytoplasmic activities of BAP1. Our data provide a mechanistic rationale for the powerful ability of BAP1 to regulate gene-environment interaction in human carcinogenesis.


Subject(s)
Calcium/metabolism , Cell Transformation, Neoplastic , Cytoplasm/metabolism , Endoplasmic Reticulum/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mitochondria/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Apoptosis/genetics , Asbestos/toxicity , Calcium Signaling , Cell Nucleus/metabolism , Cell Survival , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/radiation effects , Cells, Cultured , DNA Damage , Epithelium , Fibroblasts , Gene-Environment Interaction , Humans , Protein Binding , Protein Stability , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Ubiquitin/metabolism , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/genetics
14.
Proc Natl Acad Sci U S A ; 113(47): 13432-13437, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27834213

ABSTRACT

We used a custom-made comparative genomic hybridization array (aCGH; average probe interval 254 bp) to screen 33 malignant mesothelioma (MM) biopsies for somatic copy number loss throughout the 3p21 region (10.7 Mb) that harbors 251 genes, including BRCA1 (breast cancer 1)-associated protein 1 (BAP1), the most commonly mutated gene in MM. We identified frequent minute biallelic deletions (<3 kb) in 46 of 251 genes: four were cancer-associated genes: SETD2 (SET domain-containing protein 2) (7 of 33), BAP1 (8 of 33), PBRM1 (polybromo 1) (3 of 33), and SMARCC1 (switch/sucrose nonfermentable- SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily c, member 1) (2 of 33). These four genes were further investigated by targeted next-generation sequencing (tNGS), which revealed sequence-level mutations causing biallelic inactivation. Combined high-density aCGH and tNGS revealed biallelic gene inactivation in SETD2 (9 of 33, 27%), BAP1 (16 of 33, 48%), PBRM1 (5 of 33, 15%), and SMARCC1 (2 of 33, 6%). The incidence of genetic alterations detected is much higher than reported in the literature because minute deletions are not detected by NGS or commercial aCGH. Many of these minute deletions were not contiguous, but rather alternated with segments showing oscillating copy number changes along the 3p21 region. In summary, we found that in MM: (i) multiple minute simultaneous biallelic deletions are frequent in chromosome 3p21, where they occur as distinct events involving multiple genes; (ii) in addition to BAP1, mutations of SETD2, PBRM1, and SMARCC1 are frequent in MM; and (iii) our results suggest that high-density aCGH combined with tNGS provides a more precise estimate of the frequency and types of genes inactivated in human cancer than approaches based exclusively on NGS strategy.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 3/genetics , Comparative Genomic Hybridization , High-Throughput Nucleotide Sequencing , Lung Neoplasms/genetics , Mesothelioma/genetics , Alleles , Cell Line, Tumor , DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Genome, Human , Humans , Mesothelioma, Malignant , Multigene Family , Mutation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
15.
PLoS Genet ; 11(12): e1005633, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26683624

ABSTRACT

We recently discovered an inherited cancer syndrome caused by BRCA1-Associated Protein 1 (BAP1) germline mutations, with high incidence of mesothelioma, uveal melanoma and other cancers and very high penetrance by age 55. To identify families with the BAP1 cancer syndrome, we screened patients with family histories of multiple mesotheliomas and melanomas and/or multiple cancers. We identified four families that shared an identical BAP1 mutation: they lived across the US and did not appear to be related. By combining family histories, molecular genetics, and genealogical approaches, we uncovered a BAP1 cancer syndrome kindred of ~80,000 descendants with a core of 106 individuals, whose members descend from a couple born in Germany in the early 1700s who immigrated to North America. Their descendants spread throughout the country with mutation carriers affected by multiple malignancies. Our data show that, once a proband is identified, extended analyses of these kindreds, using genomic and genealogical studies to identify the most recent common ancestor, allow investigators to uncover additional branches of the family that may carry BAP1 mutations. Using this knowledge, we have identified new branches of this family carrying BAP1 mutations. We have also implemented early-detection strategies that help identify cancers at early-stage, when they can be cured (melanomas) or are more susceptible to therapy (MM and other malignancies).


Subject(s)
Genetic Predisposition to Disease , Melanoma/genetics , Mesothelioma/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Uveal Neoplasms/genetics , Female , Genealogy and Heraldry , Germ-Line Mutation , Germany , Humans , Male , Melanoma/pathology , Mesothelioma/pathology , Pedigree , United States , Uveal Neoplasms/pathology
16.
Biomark Res ; 3: 14, 2015.
Article in English | MEDLINE | ID: mdl-26140217

ABSTRACT

A 72-year-old woman was diagnosed with uveal melanoma, peritoneal mesothelioma and a primary biliary tract adenocarcinoma. She had a strong family history of mesothelioma as well as other malignancies including renal cell carcinoma. The recently described BAP1 hereditary cancer predisposition syndrome was suspected, but immunohistochemical labeling was not conclusive. Genetic testing confirmed a novel and unusual germline mutation in the ubiquitin hydrolase domain of the BAP1 gene (p.Tyr173Cys) and the patient was diagnosed with the BAP1 hereditary cancer predisposition syndrome. This case demonstrates the importance of clinically recognizing this rare syndrome and its manifestations, some which are still being characterized. It also highlights the importance of genetic testing in cases where there is a high clinical suspicion, even when screening tests, such as immunohistochemistry, in this case, are inconclusive. The diagnosis of a germline BAP1 mutation may have important implications for both the patient and their families with regards to further genetic testing and active surveillance programs. Further research is needed to fully understand the extent and clinical implications of this rare cancer syndrome.

17.
J Thorac Oncol ; 10(4): 565-76, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25658628

ABSTRACT

BACKGROUND: Breast cancer 1-associated protein 1 (BAP1) is a nuclear deubiquitinase that regulates gene expression, transcription, DNA repair, and more. Several findings underscore the apparent driver role of BAP1 in malignant mesothelioma (MM). However, the reported frequency of somatic BAP1 mutations in MM varies considerably, a discrepancy that appeared related to either methodological or ethnical differences across various studies. METHODS: To address this discrepancy, we carried out comprehensive genomic and immunohistochemical (IHC) analyses to detect somatic BAP1 gene alterations in 22 frozen MM biopsies from U.S. MM patients. RESULTS: By combining Sanger sequencing, multiplex ligation-dependent probe amplification, copy number analysis, and cDNA sequencing, we found alteration of BAP1 in 14 of 22 biopsies (63.6%). No changes in methylation were observed. IHC revealed normal nuclear BAP1 staining in the eight MM containing wild-type BAP1, whereas no nuclear staining was detected in the 14 MM biopsies containing tumor cells with mutated BAP1. Thus, IHC results were in agreement with those obtained by genomic analyses. We then extended IHC analysis to an independent cohort of 70 MM biopsies, of which there was insufficient material to perform molecular studies. IHC revealed loss of BAP1 nuclear staining in 47 of these 70 MM biopsies (67.1%). CONCLUSIONS: Our findings conclusively establish BAP1 as the most commonly mutated gene in MM, regardless of ethnic background or other clinical characteristics. Our data point to IHC as the most accessible and reliable technique to detect BAP1 status in MM biopsies.


Subject(s)
DNA, Neoplasm/genetics , Lung Neoplasms/genetics , Mesothelioma/genetics , Mutation , Pleural Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Adult , Aged , Biopsy , Female , Humans , Immunohistochemistry , Incidence , Lung Neoplasms/epidemiology , Lung Neoplasms/pathology , Male , Mesothelioma/epidemiology , Mesothelioma/pathology , Mesothelioma, Malignant , Middle Aged , New York/epidemiology , Pleural Neoplasms/epidemiology , Pleural Neoplasms/pathology , Prognosis , Real-Time Polymerase Chain Reaction , Tumor Cells, Cultured , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Young Adult
18.
Genes Cancer ; 2(5): 576-84, 2011 May.
Article in English | MEDLINE | ID: mdl-21901170

ABSTRACT

The ribonuclease ranpirnase (Onconase) has been used empirically to treat malignant mesothelioma (MM) patients, and some of them had prolonged survivals. The aim of this study was to investigate the mechanisms of the therapeutic function of ranpirnase in MM cells. The effects of ranpirnase were studied in vivo and in vitro on 2 MM cell lines (epithelioid REN and sarcomatoid PPM-Mill). We found that ranpirnase was able to inhibit NF-κB nuclear translocation, evaluated by cell fractionation and immunoblotting as well as by immunofluorescence. Also, MMP9 secretion by MM cells was decreased by ranpirnase treatment, as assessed by the reduction of metalloproteinase activity, evaluated by zymography on culture-conditioned media. Ranpirnase induced apoptosis of MM cells in vitro and in vivo, causing a powerful inhibition of MM tumor growth in SCID xenografts, determined by In Vivo Imaging System (IVIS) of tumor cells engineered by lentiviral transduction of the luciferase gene. Finally, mice treated with ranpirnase showed a significantly prolonged survival. Our data provide a mechanistic rationale to explain the beneficial antitumor activity observed in some patients treated with ranpirnase and demonstrate that ranpirnase interferes with the NF-κB pathway, thus influencing MM tumor cell invasiveness and survival. It is hoped that this information will also facilitate the identification of those patients who are more likely to benefit from this drug and will also open a new frontier for the use of this drug in tumor types other than MM.

19.
Nat Genet ; 43(10): 1022-5, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21874000

ABSTRACT

Because only a small fraction of asbestos-exposed individuals develop malignant mesothelioma, and because mesothelioma clustering is observed in some families, we searched for genetic predisposing factors. We discovered germline mutations in the gene encoding BRCA1 associated protein-1 (BAP1) in two families with a high incidence of mesothelioma, and we observed somatic alterations affecting BAP1 in familial mesotheliomas, indicating biallelic inactivation. In addition to mesothelioma, some BAP1 mutation carriers developed uveal melanoma. We also found germline BAP1 mutations in 2 of 26 sporadic mesotheliomas; both individuals with mutant BAP1 were previously diagnosed with uveal melanoma. We also observed somatic truncating BAP1 mutations and aberrant BAP1 expression in sporadic mesotheliomas without germline mutations. These results identify a BAP1-related cancer syndrome that is characterized by mesothelioma and uveal melanoma. We hypothesize that other cancers may also be involved and that mesothelioma predominates upon asbestos exposure. These findings will help to identify individuals at high risk of mesothelioma who could be targeted for early intervention.


Subject(s)
Germ-Line Mutation , Mesothelioma/genetics , Pleural Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Asbestos/toxicity , Environmental Exposure , Female , Genetic Linkage , Genetic Predisposition to Disease , Humans , Male , Melanoma/genetics , Mesothelioma/pathology , Pedigree , Pleural Neoplasms/pathology , Risk Factors , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Uveal Neoplasms/genetics
20.
Proc Natl Acad Sci U S A ; 107(28): 12611-6, 2010 Jul 13.
Article in English | MEDLINE | ID: mdl-20616036

ABSTRACT

Asbestos carcinogenesis has been linked to the release of cytokines and mutagenic reactive oxygen species (ROS) from inflammatory cells. Asbestos is cytotoxic to human mesothelial cells (HM), which appears counterintuitive for a carcinogen. We show that asbestos-induced HM cell death is a regulated form of necrosis that links to carcinogenesis. Asbestos-exposed HM activate poly(ADP-ribose) polymerase, secrete H(2)O(2), deplete ATP, and translocate high-mobility group box 1 protein (HMGB1) from the nucleus to the cytoplasm, and into the extracellular space. The release of HMGB1 induces macrophages to secrete TNF-alpha, which protects HM from asbestos-induced cell death and triggers a chronic inflammatory response; both favor HM transformation. In both mice and hamsters injected with asbestos, HMGB1 was specifically detected in the nuclei, cytoplasm, and extracellular space of mesothelial and inflammatory cells around asbestos deposits. TNF-alpha was coexpressed in the same areas. HMGB1 levels in asbestos-exposed individuals were significantly higher than in nonexposed controls (P < 0.0001). Our findings identify the release of HMGB1 as a critical initial step in the pathogenesis of asbestos-related disease, and provide mechanistic links between asbestos-induced cell death, chronic inflammation, and carcinogenesis. Chemopreventive approaches aimed at inhibiting the chronic inflammatory response, and especially blocking HMGB1, may decrease the risk of malignant mesothelioma among asbestos-exposed cohorts.


Subject(s)
HMGB1 Protein/metabolism , Inflammation/metabolism , Adenosine Diphosphate Ribose/metabolism , Adenosine Diphosphate Ribose/pharmacology , Animals , Asbestos/metabolism , Asbestos/pharmacology , Carcinogens/metabolism , Carcinogens/pharmacology , Cell Death , Cell Nucleus/metabolism , Cells/metabolism , Cricetinae , Cytokines/metabolism , Cytokines/pharmacology , Epithelial Cells/metabolism , Epithelium/drug effects , Epithelium/metabolism , Female , HMGB Proteins/metabolism , HMGB Proteins/pharmacology , HMGB1 Protein/pharmacology , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Macrophages/metabolism , Mesocricetus , Mesothelioma/metabolism , Mice , Mice, Inbred BALB C , Necrosis/metabolism , Pleural Neoplasms/metabolism , Poly Adenosine Diphosphate Ribose/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/pharmacology , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...