Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Nat Plants ; 10(6): 971-983, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898164

ABSTRACT

Wheat blast, a devastating disease having spread recently from South America to Asia and Africa, is caused by Pyricularia oryzae (synonym of Magnaporthe oryzae) pathotype Triticum, which first emerged in Brazil in 1985. Rmg8 and Rmg7, genes for resistance to wheat blast found in common wheat and tetraploid wheat, respectively, recognize the same avirulence gene, AVR-Rmg8. Here we show that an ancestral resistance gene, which had obtained an ability to recognize AVR-Rmg8 before the differentiation of Triticum and Aegilops, has expanded its target pathogens. Molecular cloning revealed that Rmg7 was an allele of Pm4, a gene for resistance to wheat powdery mildew on 2AL, whereas Rmg8 was its homoeologue on 2BL ineffective against wheat powdery mildew. Rmg8 variants with the ability to recognize AVR-Rmg8 were distributed not only in Triticum spp. but also in Aegilops speltoides, Aegilops umbellulata and Aegilops comosa. This result suggests that the origin of resistance gene(s) recognizing AVR-Rmg8 dates back to the time before differentiation of A, B, S, U and M genomes, that is, ~5 Myr before the emergence of its current target, the wheat blast fungus. Phylogenetic analyses suggested that, in the evolutionary process thereafter, some of their variants gained the ability to recognize the wheat powdery mildew fungus and evolved into genes controlling dual resistance to wheat powdery mildew and wheat blast.


Subject(s)
Ascomycota , Disease Resistance , Plant Diseases , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Ascomycota/physiology , Genes, Plant , Evolution, Molecular , Aegilops/genetics , Aegilops/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny
2.
Plants (Basel) ; 13(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38337864

ABSTRACT

Modifying inflorescence architecture improves grain number and grain weight in bread wheat (Triticum aestivum). Allelic variation in Grain Number Increase 1 (GNI-A1) genes, encoding a homeodomain leucine zipper class I transcription factor, influences grain number and yield. However, allelic information about GNI-A1 in diverse germplasms remains limited. Here, we investigated GNI-A1 alleles in a panel of 252 diverse bread wheat accessions (NBRP core collection and HRO breeder's panel) by target resequencing. Cultivars carrying the reduced-function allele (105Y) were predominant in the NBRP panel, whereas the 105N functional allele was the major type in the HRO panel. Cultivars with the 105Y allele were distributed in Asian landraces but not in European genotypes. Association analysis demonstrated that floret fertility, together with grain size, were improved in cultivars in the NBRP core collection carrying the 105Y allele. These results imply that different alleles of GNI-A1 have been locally selected, with the 105Y allele selected in East Asia and the 105N allele selected in Europe.

3.
Proc Natl Acad Sci U S A ; 120(11): e2214968120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36897977

ABSTRACT

Wheat yellow mosaic virus (WYMV) is a pathogen transmitted into its host's roots by the soil-borne vector Polymyxa graminis. Ym1 and Ym2 genes protect the host from the significant yield losses caused by the virus, but the mechanistic basis of these resistance genes remains poorly understood. Here, it has been shown that Ym1 and Ym2 act within the root either by hindering the initial movement of WYMV from the vector into the root and/or by suppressing viral multiplication. A mechanical inoculation experiment on the leaf revealed that the presence of Ym1 reduced viral infection incidence, rather than viral titer, while that of Ym2 was ineffective in the leaf. To understand the basis of the root specificity of the Ym2 product, the gene was isolated from bread wheat using a positional cloning approach. The candidate gene encodes a CC-NBS-LRR protein and it correlated allelic variation with respect to its sequence with the host's disease response. Ym2 (B37500) and its paralog (B35800) are found in the near-relatives, respectively, Aegilops sharonensis and Aegilops speltoides (a close relative of the donor of bread wheat's B genome), while both sequences, in a concatenated state, are present in several accessions of the latter species. Structural diversity in Ym2 has been generated via translocation and recombination between the two genes and enhanced by the formation of a chimeric gene resulting from an intralocus recombination event. The analysis has revealed how the Ym2 region has evolved during the polyploidization events leading to the creation of cultivated wheat.


Subject(s)
Aegilops , Triticum , Aegilops/genetics , Aegilops/metabolism , Triticum/genetics , Triticum/metabolism , Triticum/virology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/virology , Cloning, Molecular , Transcription, Genetic , Phylogeny , Plant Diseases
4.
Breed Sci ; 72(1): 66-74, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36045888

ABSTRACT

Phenotyping is a critical process in plant breeding, especially when there is an increasing demand for streamlining a selection process in a breeding program. Since manual phenotyping has limited efficiency, high-throughput phenotyping methods are recently popularized owing to progress in sensor and image processing technologies. However, in a size-limited breeding field, which is common in Japan and other Asian countries, it is challenging to introduce large machinery in the field or fly unmanned aerial vehicles over the field. In this study, we developed a ground-based high-throughput field phenotyping rover that could be easily introduced to a field regardless of the scale and location of the field even without special facilities. We also made the field rover open-source hardware, making its system available to public for easy modification, so that anyone can build one for their own use at a low cost. The trial run of the field rover revealed that it allowed the collection of detailed remote-sensing images of plants and quantitative analyses based on the images. The results suggest that the field rover developed in this study could allow efficient phenotyping of plants especially in a small breeding field.

5.
Plant Phenomics ; 2021: 9846158, 2021.
Article in English | MEDLINE | ID: mdl-34778804

ABSTRACT

The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD_2020 has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience, a few avenues for improvements have been identified regarding data size, head diversity, and label reliability. To address these issues, the 2020 dataset has been reexamined, relabeled, and complemented by adding 1722 images from 5 additional countries, allowing for 81,553 additional wheat heads. We now release in 2021 a new version of the Global Wheat Head Detection dataset, which is bigger, more diverse, and less noisy than the GWHD_2020 version.

6.
Plant Cell Physiol ; 62(1): 8-27, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33244607

ABSTRACT

Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.


Subject(s)
Disease Resistance/genetics , Flowers/growth & development , Genes, Plant/genetics , Genome, Plant/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Cytogenetics , Asia, Eastern , Flowers/genetics , Fusarium , Genes, Plant/physiology , Genetic Association Studies , Genetic Variation/genetics , Genetic Variation/physiology , Genome, Plant/physiology , Genotype , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Triticum/growth & development , Triticum/immunology , Triticum/physiology
7.
Sci Rep ; 10(1): 3744, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111908

ABSTRACT

Decreasing the transfer of radioactive cesium (RCs) from soil to crops has been important since the deposition of RCs in agricultural soil owing to the Fukushima nuclear power plant accident of 2011. We investigated the genotypic variation in RCs accumulation in 234 and 198 hexaploid wheat (Triticum spp.) varieties in an affected field in 2012 and 2013, respectively. The effects of soil exchangeable potassium (ExK) content to RCs accumulation in wheat varieties were also evaluated. A test field showed fourfold differences in soil ExK contents based on location, and the wheat varieties grown in areas with lower soil ExK contents tended to have higher grain RCs concentrations. RCs concentrations of shoots, when corrected by the soil ExK content, were positively significantly correlated between years, and RCs concentrations of shoots were significantly correlated with the grain RCs concentration corrected by the soil ExK content. These results indicated that there were genotypic variations in RCs accumulation. The grain to shoot ratio of RCs also showed significant genotypic variation. Wheat varieties with low RCs accumulations were identified. They could contribute to the research and breeding of low RCs accumulating wheat and to agricultural production in the area affected by RCs deposition.


Subject(s)
Cesium Radioisotopes/metabolism , Edible Grain/metabolism , Fukushima Nuclear Accident , Soil Pollutants, Radioactive/metabolism , Triticum/metabolism , Edible Grain/genetics , Japan , Triticum/genetics
8.
DNA Res ; 26(2): 171-182, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30715317

ABSTRACT

Dramatic changes occasionally occur in intergenic regions leading to genomic alterations during speciation and will consequently obscure the ancestral species that have contributed to the formation of allopolyploid organisms. The S genome of five species of section Sitopsis of genus Aegilops is considered to be an origin of B-genome in cultivated tetraploid and hexaploid wheat species, although its actual donor is still unclear. Here, we attempted to elucidate phylogenetic relationship among Sitopsis species by performing RNA sequencing of the coding regions of each chromosome. Thus, genome-wide polymorphisms were extensively analyzed in 19 accessions of the Sitopsis species in reference to the tetraploid and hexaploid wheat B genome sequences and consequently were efficiently anchored to the B-genome chromosomes. The results of our genome-wide exon sequencing and resultant phylogenetic analysis indicate that Ae. speltoides is likely to be the direct donor of all chromosomes of the wheat B genome. Our results also indicate that the genome differentiation during wheat allopolyploidization from S to B proceeds at different speeds over the chromosomes rather than at constant rate and recombination could be a factor determining the speed. This observation is potentially generalized to genome differentiation during plant allopolyploid evolution.


Subject(s)
Aegilops/genetics , Evolution, Molecular , Genome, Plant , Phylogeny , Plant Leaves/genetics , Sequence Analysis, RNA , Triticum/genetics , Aegilops/classification , Chromosomes, Plant , Genomics , Polymorphism, Genetic , Exome Sequencing
9.
Genes Genet Syst ; 94(1): 35-49, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30626760

ABSTRACT

We investigated the genetic diversity of the core collection of hexaploid wheat accessions in the Japanese wheat gene bank, NBRP-Wheat, with a focus on grain morphology. We scanned images of grains in the core collection, which consists of 189 accessions of Triticum aestivum, T. spelta, T. compactum, T. sphaerococcum, T. macha and T. vavilovii. From the scanned images, we recorded six metric characters (area size, perimeter length, grain length, grain width, length to width ratio and circularity) using the software package SmartGrain ver. 1.2. Statistical analyses of the collected data along with hundred-grain weight revealed that T. aestivum has the largest diversity in grain morphology. Principal component analysis of these seven characters demonstrated that two principal components (PCcore1 and PCcore2) explain more than 96% of the variation in the core collection accessions. The correlation coefficients between the principal components and characters indicate that PCcore1 is related to grain size and PCcore2 to grain shape. From a genome-wide association study, we found a total of 15 significant marker-trait associations (MTAs) for grain morphological characters. More interestingly, we found mutually exclusive MTAs for PCcore1 and PCcore2 on 18 and 13 chromosomes, respectively. The results suggest that grain morphology in hexaploid wheat is determined by two factors, grain size and grain shape, which are under the control of multiple genetic loci.


Subject(s)
Edible Grain/genetics , Polymorphism, Genetic , Polyploidy , Quantitative Trait Loci , Triticum/genetics , Chromosomes, Plant/genetics , Edible Grain/anatomy & histology , Principal Component Analysis , Triticum/growth & development
10.
Genes Genet Syst ; 93(6): 237-254, 2019 Jan 19.
Article in English | MEDLINE | ID: mdl-30555105

ABSTRACT

In this study, we investigated the genetic diversity and population structure of the core collection of hexaploid wheat accessions in the Japanese wheat gene bank NBRP-Wheat. The core collection, consisting of 188 accessions of Triticum aestivum, T. spelta, T. compactum, T. sphaerococcum, T. macha and T. vavilovii, was intensively genotyped by DArTseq markers and consisted of 20,186 SNPs and 60,077 present and absent variations (PAVs). Polymorphic markers were distributed in all chromosomes, with a tendency for smaller numbers on the D-genome chromosomes. We examined the population structure by Bayesian clustering and principal component analysis with a general linear model. Overall, the core collection was divided into seven clusters. Non-admixture accessions in each cluster indicated that the clusters reflect the geographic distribution of the accessions. Both structure analyses strongly suggested that the cluster consisting of T. spelta and T. macha is out-grouped from other hexaploid wheat accessions. We performed genome-wide association analysis pilot studies for nine quantitative and seven qualitative traits and found marker-trait associations for all traits but one, indicating that the current core collection will be useful for detecting uncharacterized QTLs associated with phenotypes of interest.


Subject(s)
Polyploidy , Quantitative Trait Loci , Triticum/genetics , Polymorphism, Single Nucleotide
11.
Sci Rep ; 8(1): 16397, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30401925

ABSTRACT

Precise utilization of wild genetic resources to improve the resistance of their cultivated relatives to environmental growth limiting factors, such as salinity stress and diseases, requires a clear understanding of their genomic relationships. Although seriously criticized, analyzing these relationships in tribe Triticeae has largely been based on meiotic chromosome pairing in hybrids of wide crosses, a specialized and labourious strategy. In this study, DArTseq, an efficient genotyping-by-sequencing platform, was applied to analyze the genomes of 34 Triticeae species. We reconstructed the phylogenetic relationships among diploid and polyploid Aegilops and Triticum species, including hexaploid wheat. Tentatively, we have identified the diploid genomes that are likely to have been involved in the evolution of five polyploid species of Aegilops, which have remained unresolved for decades. Explanations which cast light on the progenitor of the A genomes and the complex genomic status of the B/G genomes of polyploid Triticum species in the Emmer and Timopheevi lineages of wheat have also been provided. This study has, therefore, demonstrated that DArTseq genotyping can be effectively applied to analyze the genomes of plants, especially where their genome sequence information are not available.


Subject(s)
Genomics , Genotyping Techniques , Poaceae/genetics , Sequence Analysis , Cluster Analysis , Diploidy , Evolution, Molecular , Polyploidy
12.
Plant J ; 96(6): 1148-1159, 2018 12.
Article in English | MEDLINE | ID: mdl-30238531

ABSTRACT

The reference genome sequence of wheat 'Chinese Spring' (CS) is now available (IWGSC RefSeq v1.0), but the core sequences defining the nucleolar organizer regions (NORs) have not been characterized. We estimated that the total copy number of the rDNA units in the wheat genome is 11 160, of which 30.5%, 60.9% and 8.6% are located on Nor-B1 (1B), Nor-B2 (6B) and other NORs, respectively. The total length of the NORs is estimated to be 100 Mb, corresponding to approximately 10% of the unassembled portion of the genome not represented in RefSeq v1.0. Four subtypes (S1-S4) of the rDNA units were identified based on differences within the 3' external transcribed spacer regions in Nor-B1 and Nor-B2, and quantitative PCR indicated locus-specific variation in rDNA subtype contents. Expression analyses of rDNA subtypes revealed that S1 was predominantly expressed and S2 weakly expressed, in contrast to the relative abundance of rDNA subtypes in the wheat genome. These results suggest a regulation mechanism of differential rDNA expression based on sequence differences. S3 expression increased in the ditelosomic lines Dt1BL and Dt6BL, suggesting that S3 is subjected to chromosome-mediated silencing. Structural differences were detected in the regions surrounding the NOR among homoeologous chromosomes of groups 1 and 6. The adjacent regions distal to the major NORs were expanded compared with their homoeologous counterparts, and the gene density of these expanded regions was relatively low. We provide evidence that these regions are likely to be important for autoregulation of the associated major NORs as well as silencing of minor NORs.


Subject(s)
Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Nucleolus Organizer Region/genetics , RNA, Plant/genetics , RNA, Ribosomal/genetics , Triticum/genetics , Chromosomes, Plant/genetics , DNA Copy Number Variations/genetics , Genetic Loci/genetics , Genome, Plant/genetics , In Situ Hybridization, Fluorescence , Nucleolus Organizer Region/metabolism , Polymerase Chain Reaction , RNA, Plant/metabolism , RNA, Ribosomal/metabolism , Triticum/metabolism
13.
Genes Genet Syst ; 93(3): 111-118, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30089747

ABSTRACT

In this study, we investigated the chromosome breakage caused by gametocidal (Gc) chromosome 3Ct and its interaction with the suppressor gene Igc1 (inhibitor of gametocidal gene 1) on wheat chromosome 3B. We demonstrated cytologically that patterns of 3Ct-induced chromosomal fragmentation in microspores differed from patterns observed for other Gc genes. Uninuclear microspores of the monosomic 3Ct addition line had high frequencies of micronuclei, possibly explaining its low fertility. Chromosome fragmentation was observed in prometaphase and metaphase of the first pollen mitosis in the monosomic 3Ct addition line. Patterns of chromosome fragmentation were different from those previously reported for Gc chromosomes 2S of Aegilops speltoides, 4Ssh of Ae. sharonensis and 2Ccy of Ae. cylindrica; many chromosome fragments were observed in prometaphase of the first pollen mitosis in the monosomic 3Ct addition plants. In anthers at the binuclear stage, many microspores at the uninuclear stage coexisted with normally developed microspores.


Subject(s)
Pollen/genetics , Triticum/genetics , Aegilops/genetics , Chromosome Breakage , Chromosomes, Plant , Genes, Plant , Poaceae/genetics , Pollen/cytology , Triticum/cytology
14.
Genes Genet Syst ; 93(1): 25-29, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-29343669

ABSTRACT

The wheat florigen gene Wheat FLOWERING LOCUS T (WFT, which is identical to VRN3) is an integrator of the vernalization, photoperiod and autonomous pathways in wheat flowering. Many studies have indicated that VERNALIZATION 1 (VRN1) directly or indirectly up-regulates WFT expression in leaves. VRN1 encodes an APETALA1/FRUITFULL-like MADS box transcription factor that is up-regulated by vernalization and aging, leading to promotion of flowering. In this study, the VRN1 protein was expressed as a His-Tag fusion protein in Escherichia coli and used in an electrophoretic mobility shift assay (EMSA). The results from the EMSA indicated that the VRN1 protein directly binds to the CArG-box in the promoter region of WFT, suggesting the direct up-regulation of WFT by VRN1 in the leaves of wheat plants.


Subject(s)
MADS Domain Proteins/metabolism , Plant Proteins/genetics , Triticum/metabolism , Up-Regulation , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Binding , Triticum/genetics
15.
J Plant Physiol ; 222: 28-38, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29367015

ABSTRACT

Using heavy-ion beam mutagenesis of Triticum monococcum strain KU104-1, we identified a mutant that shows extra early-flowering; it was named extra early-flowering 3 (exe3). Here, we carried out expression analyses of clock-related genes, clock downstream genes and photoperiod pathway genes, and found that the clock component gene PHYTOCLOCK 1/LUX ARRHYTHMO (PCL1/LUX) was not expressed in exe3 mutant plants. A PCR analysis of DNA markers indicated that the exe3 mutant had a deletion of wheat PCL1/LUX (WPCL1), and that the WPCL1 deletion was correlated with the mutant phenotype in the segregation line. We confirmed that the original strain KU104-1 carried a mutation that produced a null allele of a flowering repressor gene VERNALIZATION 2 (VRN2). As a result, the exe3 mutant has both WPCL1 and VRN2 loss-of-function mutations. Analysis of plant development in a growth chamber showed that vernalization treatment accelerated flowering time in the exe3 mutant under short day (SD) as well as long day (LD) conditions, and the early-flowering phenotype was correlated with the earlier up-regulation of VRN1. The deletion of WPCL1 affects the SD-specific expression patterns of some clock-related genes, clock downstream genes and photoperiod pathway genes, suggesting that the exe3 mutant causes a disordered SD response. The present study indicates that VRN1 expression is associated with the biological clock and the VRN1 up-regulation is not influenced by the presence or absence of VRN2.


Subject(s)
Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Sequence Deletion , Triticum/genetics , Flowers/genetics , Mutation , Photoperiod , Plant Proteins/metabolism , Triticum/growth & development
16.
PLoS One ; 12(4): e0176148, 2017.
Article in English | MEDLINE | ID: mdl-28437453

ABSTRACT

The awn is a long needle-like structure formed at the tip of the lemma in the florets of some grass species. It plays a role in seed dispersal and protection against animals, and can contribute to the photosynthetic activity of spikes. Three main dominant inhibitors of awn development (Hd, B1 and B2) are known in hexaploid wheat, but the causal genes have not been cloned yet and a genetic association with awn length diversity has been found only for the B1 allele. To analyze the prevalence of these three awning inhibitors, we attempted to predict the genotypes of 189 hexaploid wheat varieties collected worldwide using markers tightly linked to these loci. Using recombinant inbred lines derived from two common wheat cultivars, Chinese Spring and Mironovskaya 808, both with short awns, and a high-density linkage map, we performed quantitative trait locus analysis to identify tightly linked markers. Because this linkage map was constructed with abundant array-based markers, we converted the linked markers to PCR-based markers and determined the genotypes of 189 hexaploids. A significant genotype-phenotype correlation was observed at the Hd and B1 regions. We also found that interaction among these three awning inhibitors is involved in development of a membranous outgrowth at the base of awn resembling the Hooded mutants of barley. For the hooded awn phenotype, presence of the Hd dominant allele was essential but not sufficient, so B2 and other factors appear to act epistatically to produce the ectopic tissue. On the other hand, the dominant B1 allele acted as a suppressor of the hooded phenotype. These three awning inhibitors largely contribute to the genetic variation in awn length and shape of common wheat.


Subject(s)
Genes, Dominant , Genetic Variation , Genome, Plant , Plant Proteins/genetics , Plant Structures/genetics , Triticum/genetics , Alleles , Genetic Association Studies , Genetic Linkage , Genotype , Quantitative Trait Loci
17.
PLoS One ; 11(10): e0165618, 2016.
Article in English | MEDLINE | ID: mdl-27788250

ABSTRACT

Triticum aestivum L. cv 'Chogokuwase' is an extra-early flowering common wheat cultivar that is insensitive to photoperiod conferred by the photoperiod insensitive alleles at the Photoperiod-B1 (Ppd-B1) and Ppd-D1loci, and does not require vernalization for flowering. This reduced vernalization requirement is likely due to the spring habitat allele Vrn-D1 at the VERNALIZATION-D1 locus. Genotypes of the Ppd-1 loci that determine photoperiod sensitivity do not fully explain the insensitivity to photoperiod seen in 'Chogokuwase'. We detected altered expression patterns of clock and clock-output genes including Ppd-1 in 'Chogokuwase' that were similar to those in an einkorn wheat mutant that lacks the clock-gene homologue, wheat PHYTOCLOCK 1 (WPCL1). Presumptive loss-of-function mutations in all WPCL1 homoeologous genes were found in 'Chogokuwase' and 'Geurumil', one of the parental cultivars. Segregation analysis of the two intervarietal F2 populations revealed that all the examined F2 plants that headed as early as 'Chogokuwase' had the loss-of-function wpcl1 alleles at all three homoeoloci. Some F2 plants carrying the wpcl1 alleles at three homoeoloci headed later than 'Chogokuwase', suggesting the presence of other loci influencing heading date. Flowering repressor Vrn-2 was up-regulated in 'Chogokuwase' and 'Geurumil' that had the triple recessive wpcl1 alleles. An elevated transcript abundance of Vrn-2 could explain the observation that 'Geurumil' and some F2 plants carrying the three recessive wpcl1 homeoealleles headed later than 'Chogokuwase'. In spite of the up-regulation of Vrn-2, 'Chogokuwase' may have headed earlier due to unidentified earliness genes. Our observations indicated that loss-of-function mutations in the clock gene wpcl1 are necessary but are not sufficient to explain the extra-early heading of 'Chogokuwase'.


Subject(s)
Flowers , Genes, Plant , Mutation , Transcription Factors/genetics , Triticum/genetics , Amino Acid Sequence , Epistasis, Genetic , Homozygote , Photoperiod , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Triticum/physiology
18.
BMC Genomics ; 16: 595, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26265254

ABSTRACT

BACKGROUND: A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat. RESULTS: We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91% of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87% of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B. CONCLUSIONS: We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Physical Chromosome Mapping/methods , Triticum/genetics , Chromosomes, Plant , Evolution, Molecular , Gene Order , Gene Rearrangement , Genetic Markers , Nucleolus Organizer Region
19.
Theor Appl Genet ; 128(8): 1569-78, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25957645

ABSTRACT

KEY MESSAGE: Wheat yellow mosaic virus resistance of Madsen is governed by two complementary QTLs, Qym1 and Qym2 , located on chromosome arms 2DL and 3BS. Wheat yellow mosaic, caused by Wheat yellow mosaic virus (WYMV), is one of the most serious wheat diseases in East Asia. In this study, recombinant inbred lines (RILs, F9) from a cross between cultivars Madsen (resistant) and Hokushin (susceptible) grown in a WYMV-infected nursery field were tested for the presence of WYMV in leaves by enzyme-linked immunosorbent assay (ELISA) and genotyped by using genome-wide molecular markers. Two major QTLs were detected: Qym1 located between Xgwm539 and Xgwm349 on chromosome 2DL and Qym2 located between Xbarc147 and Xwmc623 on chromosome 3BS. The resistance alleles for both QTLs originated from Madsen. The third QTL Qym3 located near Xwmc457 on chromosome 4D, where the resistant allele for this QTL originated from Hokushin. Although the Qym3 was rather minor, it was essential to complement Qym1 and Qym2 for complete avoidance of WYMV infection. Near-isogenic lines carrying the resistance QTLs were developed by repeated backcrosses using Madsen as the donor parent and Hokushin as the recurrent parent. The lines that were resistant to WYMV (as tested by ELISA) were homozygous for the Madsen alleles at both Qym1 and Qym2. Qym1 dominance was partial, whereas that of Qym2 was nearly complete. Qym1 was closely linked to Xwmc41; Qym2 was closely linked to Xwmc754. These markers will be useful in marker-assisted selection in wheat breeding for WYMV resistance; this study will facilitate cloning the WYMV resistance genes.


Subject(s)
Disease Resistance/genetics , Mosaic Viruses/pathogenicity , Plant Diseases/genetics , Quantitative Trait Loci , Triticum/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , DNA, Plant/genetics , Genetic Markers , Genotype , Inbreeding , Linear Models , Models, Genetic , Plant Diseases/virology , Triticum/virology
20.
Genes Genet Syst ; 89(3): 121-31, 2014.
Article in English | MEDLINE | ID: mdl-25475935

ABSTRACT

Domestication-related changes that govern a spike morphology suitable for seed harvesting in cereals have resulted from mutation and selection of the genes. A synthetic hexaploid wheat (S-6214, genome AABBDD) produced by a cross between durum wheat (AABB) and wild goat grass (DD) showed partial non-domestication-related phenotypes due to genetic effects of the wild goat grass genome. Quantitative trait loci (QTLs) affecting wheat domestication-related spike characters including spike threshability, rachis fragility and spike compactness were investigated in F2 progeny of a cross between Chinese Spring (CS) wheat (AABBDD) and S-6214. Of 15 relevant QTLs identified, eight seemed to be consistent with peaks previously reported in wheat, while four QTL regions were novel. Four QTLs that affected spike threshability were localized to chromosomes 2BS, 2DS, 4D and 5DS. The QTL on 2DS probably represents the tenacious glume gene, Tg-D1. Based on its map position, the QTL located on 2BS coincides with Ppd-B1 and seems to be a homoeolocus of the soft glume gene. Two novel QTLs were detected on 4D and 5DS, and their goat grass alleles increased glume tenacity. Three novel QTLs located on 2DL, 3DL and 4D for rachis fragility were found. Based on the map position, the QTL on 3DL seems different from Br1 and Br2 loci and its CS allele appears to promote the generation of barrel-type diaspores. Three disarticulation types of spikelets were found in F2 individuals: wedge-type, barrel-type and both types. Among eight QTL peaks that governed spike morphology, six, located on 2AS, 2BS, 2DS, 4AL and 5AL, coincided with ones previously reported. A QTL for spike compactness on 5AL was distinct from the Q gene. A novel QTL that controls spike length was detected on 5DL. Complex genetic interactions between genetic background and the action of each gene were suggested.


Subject(s)
Plant Proteins/genetics , Quantitative Trait Loci , Triticum/physiology , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , Phenotype , Polyploidy , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...