Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
J Phys Condens Matter ; 32(18): 183001, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32026848

ABSTRACT

Recent studies carried out with atomic force microscopy or high-resolution transmission electron microscopy reveal that ferroic domain walls can exhibit different physical properties than the bulk of the domains, such as enhanced conductivity in insulators, or polar properties in non-polar materials. In this review we show that optical techniques, in spite of the diffraction limit, also provide key insights into the structure and physical properties of ferroelectric and ferroelastic domain walls. We give an overview of the uses, specificities and limits of these techniques, and emphasize the properties of the domain walls that they can probe. We then highlight some open questions of the physics of domain walls that could benefit from their use.

2.
J Phys Condens Matter ; 30(3): 035902, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29091587

ABSTRACT

Ferroic domain walls are currently investigated by several state-of-the art techniques in order to get a better understanding of their distinct, functional properties. Here, principal component analysis (PCA) of Raman maps is used to study ferroelectric domain walls (DWs) in LiNbO3 and ferroelastic DWs in NdGaO3. It is shown that PCA allows us to quickly and reliably identify small Raman peak variations at ferroelectric DWs and that the value of a peak shift can be deduced-accurately and without a priori-from a first order Taylor expansion of the spectra. The ability of PCA to separate the contribution of ferroelastic domains and DWs to Raman spectra is emphasized. More generally, our results provide a novel route for the statistical analysis of any property mapped across a DW.

3.
Sci Rep ; 6: 33098, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27608605

ABSTRACT

The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM - electrons reflected) to Low Energy Electron Microscopy (LEEM - electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field.

4.
Nanoscale Res Lett ; 5(12): 1878-81, 2010 Sep 02.
Article in English | MEDLINE | ID: mdl-21170140

ABSTRACT

Good-quality (11-22) semipolar GaN sample was obtained using epitaxial lateral overgrowth. The growth conditions were chosen to enhance the growth rate along the [0001] inclined direction. Thus, the coalescence boundaries stop the propagation of basal stacking faults. The faults filtering and the improvement of the crystalline quality were attested by transmission electron microscopy and low temperature photoluminescence. The temperature dependence of the luminescence polarization under normal incidence was also studied.

5.
J Phys Condens Matter ; 22(35): 355802, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-21403298

ABSTRACT

The defect structures in semipolar (1122)-GaN, AlN layers grown on m-sapphire by metal organic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE) are characterized by transmission electron microscopy. The epitaxial relationships are identified as [1010](GaN) || [1120]sap and [1213](GaN) || [0001]sap. Defects are identified as mostly partial dislocations, I1-basal and prismatic stacking faults. The density of dislocations is of the order of 5.5 × 10(9) cm(-2). They are Frank-Shockley partial dislocations with b = 1/6<2023> (90%), Shockley partial dislocations with b = 1/3<1010> (8%) and perfect dislocations of a-type with b = 1/3<1120> (2%). This is in contrast with the growth in c- or a-orientations, where the large majority of extended defects consists of perfect dislocations. Upon MBE regrowth of GaN on MOVPE GaN, no additional defects are generated, although the defects in the substrate propagate through the overgrown layer. However, in the case of MBE deposition of AlN on MOVPE GaN, new threading dislocations of the type b = 1/3<1123> are generated taking stepped and curved structures along their lines.

SELECTION OF CITATIONS
SEARCH DETAIL
...