Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798397

ABSTRACT

Ribosome heterogeneity has emerged as an important regulatory control feature for determining which proteins are synthesized, however, the influence of age on ribosome heterogeneity is not fully understood. Whether mRNA transcripts are selectively translated in young versus old cells and whether dysregulation of this process drives organismal aging is unknown. Here we examined the role of ribosomal RNA (rRNA) methylation in maintaining appropriate translation as organisms age. In a directed RNAi screen, we identified the 18S rRNA N6'-dimethyl adenosine (m6,2A) methyltransferase, dimt-1, as a regulator of C. elegans lifespan and stress resistance. Lifespan extension induced by dimt-1 deficiency required a functional germline and was dependent on the known regulator of protein translation, the Rag GTPase, raga-1, which links amino acid sensing to the mechanistic target of rapamycin complex (mTORC)1. Using an auxin-inducible degron tagged version of dimt-1, we demonstrate that DIMT-1 functions in the germline after mid-life to regulate lifespan. We further found that knock-down of dimt-1 leads to selective translation of transcripts important for stress resistance and lifespan regulation in the C. elegans germline in mid-life including the cytochrome P450 daf-9, which synthesizes a steroid that signals from the germline to the soma to regulate lifespan. We found that dimt-1 induced lifespan extension was dependent on the daf-9 signaling pathway. This finding reveals a new layer of proteome dysfunction, beyond protein synthesis and degradation, as an important regulator of aging. Our findings highlight a new role for ribosome heterogeneity, and specific rRNA modifications, in maintaining appropriate translation later in life to promote healthy aging.

2.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37397991

ABSTRACT

Post-translational modifications of histone tails alter chromatin accessibility to regulate gene expression. Some viruses exploit the importance of histone modifications by expressing histone mimetic proteins that contain histone-like sequences to sequester complexes that recognize modified histones. Here we identify an evolutionarily conserved and ubiquitously expressed, endogenous mammalian protein Nucleolar protein 16 (NOP16) that functions as a H3K27 mimic. NOP16 binds to EED in the H3K27 trimethylation PRC2 complex and to the H3K27 demethylase JMJD3. NOP16 knockout selectively globally increases H3K27me3, a heterochromatin mark, without altering methylation of H3K4, H3K9, or H3K36 or acetylation of H3K27. NOP16 is overexpressed and linked to poor prognosis in breast cancer. Depletion of NOP16 in breast cancer cell lines causes cell cycle arrest, decreases cell proliferation and selectively decreases expression of E2F target genes and of genes involved in cell cycle, growth and apoptosis. Conversely, ectopic NOP16 expression in triple negative breast cancer cell lines increases cell proliferation, cell migration and invasivity in vitro and tumor growth in vivo , while NOP16 knockout or knockdown has the opposite effect. Thus, NOP16 is a histone mimic that competes with Histone H3 for H3K27 methylation and demethylation. When it is overexpressed in cancer, it derepresses genes that promote cell cycle progression to augment breast cancer growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...