Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 114(11): 4305-17, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26281786

ABSTRACT

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this research, silver nanoparticles (AgNP) were synthesized using the aqueous extract of the seaweed Sargassum muticum. The production of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometry. AgNP were characterized by FTIR, SEM, EDX, and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and mean size was 43-79 nm. Toxicity of AgNP was assessed against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. In laboratory, AgNP were highly toxic against larvae and pupae of the three mosquito species. Maximum efficacy was observed against A. stephensi larvae, with LC50 ranging from 16.156 ppm (larva I) to 28.881 ppm (pupa). In the field, a single treatment with AgNP (10 × LC50) in water storage reservoirs was effective against the three mosquito vectors, allowing complete elimination of larval populations after 72 h. In ovicidal experiments, egg hatchability was reduced by 100% after treatment with 30 ppm of AgNP. Ovideterrence assays highlighted that 10 ppm of AgNP reduced oviposition rates of more than 70% in A. aegypti, A. stephensi, and C. quinquefasciatus (OAI = -0.61, -0.63, and -0.58, respectively). Antibacterial properties of AgNP were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. AgNP tested at 50 ppm evoked growth inhibition zones larger than 5 mm in all tested bacteria. Overall, the chance to use S. muticum-synthesized AgNP for control of mosquito vectors seems promising since they are effective at low doses and may constitute an advantageous alternative to build newer and safer mosquito control tools. This is the first report about ovicidal activity of metal nanoparticles against mosquito vectors.


Subject(s)
Anti-Bacterial Agents/metabolism , Culicidae/drug effects , Insecticides/metabolism , Metal Nanoparticles/chemistry , Sargassum/metabolism , Silver/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Culicidae/growth & development , Insecticides/chemistry , Insecticides/pharmacology , Larva/drug effects , Larva/growth & development , Mosquito Control/methods , Plant Leaves/chemistry , Pupa/drug effects , Pupa/growth & development , Silver/chemistry , Silver/pharmacology , Surface Plasmon Resonance
2.
Parasitol Res ; 111(2): 609-18, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22398832

ABSTRACT

The present study was carried out on Solanum xanthocarpum fruit extract and copepods Mesocyclops thermocyclopoides, which were assessed for the control of dengue vector, Aedes aegypti, under laboratory conditions. The medicinal plants were collected from the outskirts of Bharathiar University, Coimbatore, Tamil Nadu, India. The shade-dried fruit materials were extracted by employing the Soxhlet apparatus with methanol (organic solvent) 8 h and the extracts were filtered through a Buchner funnel with Whatman number 1 filter paper. The fruit extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4°C. S. xanthocarpum fruit extract (SXFE) at 100, 150, 200, 250, and 300 ppm caused significant mortality of Ae. aegypti. The LC(50) and LC(90) of S. xanthocarpum against the first to fourth instar larvae and pupae were 170.91, 195.07, 221.45, 253.18, and 279.52 ppm and 320.62, 366.48, 410.20, 435.16, and 462.10 ppm, respectively. A study was conducted to test whether the predatory efficiency of copepods on first instars changed in the presence of SXFE. The percentage of predatory efficiency of copepod was 6.5 % in treatments without SFXE and the percentage of predatory efficiency increased up to 8.7 % when copepods were combined with SFXE. This increase in predation efficiency may be caused by detrimental effects of the SFXE active principle compound (solanocarpine and solanocarpidine) on the mosquito larvae. Repeated application of fruit extract of S. xanthocarpum does not cause changes in copepod populations because fruit extract is highly degradable in the environment. Therefore, the present investigation clearly exhibits that the fruit extract of S. xanthocarpum and copepod M. thermocyclopoides could serve as a potential of highest mortality rate against the mosquito larvae under laboratory conditions. This is a new eco-friendly approach for the control of Ae. aegypti mosquito as target species. Therefore, this study provides the first report on the combined effect of mosquitocidal activity of this fruit extract and copepods of M. thermocyclopoides against dengue vector Ae. aegypti from India.


Subject(s)
Aedes/drug effects , Copepoda/physiology , Fruit/chemistry , Plant Extracts/pharmacology , Solanum/chemistry , Aedes/physiology , Animals , Female , Larva/drug effects , Mosquito Control , Pest Control, Biological , Plant Extracts/chemistry , Predatory Behavior , Pupa/drug effects , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...