Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Transplant ; 24(11): 2337-51, 2015.
Article in English | MEDLINE | ID: mdl-25562327

ABSTRACT

Adipose-derived stem cells (ASCs) from subcutaneous and visceral adipose tissues have been studied individually. No studies have compared their abilities in treatment of heart failure. This study was designed to evaluate whether ASCs from the two sources could provide a long-term improvement of cardiac function in infarcted hearts. Rat subcutaneous and visceral adipose tissues were excised for isolation of ASCs. Morphology, yield, proliferation, surface markers, differentiation, and cytokine secretion of the subcutaneous ASCs (S-ASCs) and visceral ASCs (V-ASCs) were analyzed. Then a rat model of myocardial infarction (MI) was established by a coronary occlusion. Seven days after occlusion, S-ASCs (n = 22), V-ASCs (n = 22), and Dulbecco's modified Eagle medium (DMEM, n = 20) were injected into the infarct rim, respectively. Cardiac function was then monitored with MRI for up to 6 months. The hearts were then removed for histological assessments. The yield of V-ASCs per gram of the visceral adipose depot was significantly greater than that of S-ASCs in 1 g of the subcutaneous adipose depot. On the other hand, the S-ASCs showed a greater proliferation rate and colony-forming unit relative to the V-ASCs. In addition, the infarcted hearts treated with either S-ASCs or V-ASCs showed a significantly greater left ventricular ejection fraction (LVEF) than those treated with DMEM at 4 weeks and 6 months following the cell/DMEM transplantation. Moreover, the infarct sizes of both S-ASC- and V-ASC-treated hearts were significantly smaller than that in the DMEM-treated hearts. MRI showed the implanted ASCs at the end of 6 months of recovery. Despite the differences in cell yield, proliferation, and colony formation capacity, both S-ASCs and V-ASCs provide a long-lasting improvement of cardiac contractile function in infarcted hearts. We conclude that the subcutaneous and visceral adipose tissues are equally effective cell sources for cell therapy of heart failure.


Subject(s)
Adult Stem Cells/transplantation , Coronary Occlusion/therapy , Intra-Abdominal Fat/cytology , Myocardial Contraction/drug effects , Myocardial Infarction/therapy , Stem Cell Transplantation/methods , Subcutaneous Fat/cytology , Animals , Disease Models, Animal , Female , Myocardial Infarction/physiopathology , Rats , Rats, Inbred Lew
2.
Lab Chip ; 12(22): 4829-34, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23007449

ABSTRACT

Stem cells hold great promise for treatment of various degenerative diseases. However, clinical studies have only shown very moderate benefits of cell therapy. We believe that insufficiency of therapeutic benefits is due to limited homing of implanted stem cells to targeted organs. Microfluidic devices are a very useful research tool for quantitative characterizations of stem cells. The present study therefore was to assess the effects of epidermal growth factor (EGF) and direct current electric field (dcEF) on the growth and trafficking of adipose-derived stem cells (ASC). It was found that EGF did not affect cell proliferation in cell-culture flasks. However, ASC proliferated at a higher rate in microfluidic devices with continuous infusion of EGF. Furthermore, we found that ASC migrated toward an EGF gradient in microfluidic devices. Moreover, we found that ASC tended to position perpendicularly to dcEF. The results suggest that EGF and dcEF may be effective in guiding homing and trafficking of implanted ASC.


Subject(s)
Adipose Tissue/cytology , Cell Culture Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Stem Cells/cytology , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Electric Conductivity , Epidermal Growth Factor/pharmacology , Rats , Stem Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...