Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
J Leukoc Biol ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489665

ABSTRACT

Tuberculosis caused by the pathogen Mycobacterium tuberculosis leads to increased mortality and morbidity worldwide. The prevalence of highly drug resistant strains has reinforced the need for greater understanding of host-pathogen interactions at the cellular and molecular levels. Our previous work demonstrated critical roles of calcium ion channels in regulating protective responses to mycobacteria. In this report we deciphered the roles of inwardly rectifying K+ ion channel Kir2.1 in epithelial cells. Data showed that infection of epithelial cells (and macrophages) increases the surface expression of Kir2.1. This increased expression of Kir2.1 results in higher intracellular mycobacterial survival, since either inhibiting or knocking down Kir2.1 results in mounting of a higher oxidative burst leading to a significant attenuation of mycobacterial survival. Further, inhibiting Kir2.1 also led to increased expression of T cell costimulatory molecules accompanied with increased activation of MAP Kinases and transcription factors NF-κB and pCREB. Furthermore, inhibiting Kir2.1 induced increased autophagy and apoptosis that could also contribute to decreased bacterial survival. Interestingly, an increased association of heat shock protein-70 with Kir2.1 was observed. The above results showed that mycobacteria modulate the expression and function of Kir2.1 in epithelial cells to its advantage.

2.
mSphere ; 9(2): e0070323, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38251906

ABSTRACT

Promoter shutoff of essential genes in the diploid Candida albicans has often been insufficient to create tight, conditional null alleles due to leaky expression and has been a stumbling block in pathogenesis research. Moreover, homozygous deletion of non-essential genes has often been problematic due to the frequent aneuploidy in the mutant strains. Rapid, conditional depletion of essential genes by the anchor-away strategy has been successfully employed in Saccharomyces cerevisiae and other model organisms. Here, rapamycin mediates the dimerization of human FK506-binding protein (FKBP12) and FKBP12-rapamycin-binding (FRB) domain-containing target protein, resulting in relocalization to altered sub-cellular locations. In this work, we used the ribosomal protein Rpl13 as the anchor and took two nuclear proteins as targets to construct a set of mutants in a proof-of-principle approach. We first constructed a rapamycin-resistant C. albicans strain by introducing a dominant mutation in the CaTOR1 gene and a homozygous deletion of RBP1, the ortholog of FKBP12, a primary target of rapamycin. The FKBP12 and the FRB coding sequences were then CUG codon-adapted for C. albicans by site-directed mutagenesis. Anchor-away strains expressing the essential TBP1 gene or the non-essential SPT8 gene as FRB fusions were constructed. We found that rapamycin caused rapid cessation of growth of the TBP-AA strain within 15 minutes and the SPT8-AA strain phenocopied the constitutive filamentous phenotype of the spt8Δ/spt8Δ mutant. Thus, the anchor-away toolbox for C. albicans developed here can be employed for genome-wide analysis to identify gene function in a rapid and reliable manner, further accelerating anti-fungal drug development in C. albicans. IMPORTANCE: Molecular genetic studies thus far have identified ~27% open-reading frames as being essential for the vegetative growth of Candida albicans in rich medium out of a total 6,198 haploid set of open reading frames. However, a major limitation has been to construct rapid conditional alleles of essential C. albicans genes with near quantitative depletion of encoded proteins. Here, we have developed a toolbox for rapid and conditional depletion of genes that would aid studies of gene function of both essential and non-essential genes.


Subject(s)
Candida albicans , Tacrolimus Binding Protein 1A , Humans , Candida albicans/genetics , Tacrolimus Binding Protein 1A/genetics , Homozygote , Sequence Deletion , Sirolimus , Saccharomyces cerevisiae/genetics , Codon
3.
Microbes Infect ; 26(3): 105271, 2024.
Article in English | MEDLINE | ID: mdl-38036036

ABSTRACT

Microorganisms present in the gut modulate host defence responses against infections in order to maintain immune homeostasis. This host-microbe crosstalk is regulated by gut metabolites. Butyrate is one such small chain fatty acid produced by gut microbes upon fermentation that has the potential to influence immune responses. Here we investigated the role of butyrate in macrophages during mycobacterial infection. Results demonstrate that butyrate significantly suppresses the growth kinetics of mycobacteria in culture medium as well as inhibits mycobacterial survival inside macrophages. Interestingly, butyrate alters the pentose phosphate pathway by inducing higher expression of Glucose-6-Phosphate Dehydrogenase (G6PDH) resulting in a higher oxidative burst via decreased Sod-2 and increased Nox-2 (NADPH oxidase-2) expression. Butyrate-induced G6PDH also mediated a decrease in mitochondrial membrane potential. This in turn lead to an induction of apoptosis as measured by lower expression of the anti-apoptotic protein Bcl-2 and a higher release of Cytochrome C as a result of induction of apoptosis. These results indicate that butyrate alters the metabolic status of macrophages and induces protective immune responses against mycobacterial infection.


Subject(s)
Butyrates , Mycobacterium Infections , Humans , Butyrates/pharmacology , Glucosephosphate Dehydrogenase/metabolism , Respiratory Burst , Macrophages/microbiology , Mycobacterium Infections/metabolism , Apoptosis
4.
PLoS One ; 18(9): e0283448, 2023.
Article in English | MEDLINE | ID: mdl-37773921

ABSTRACT

Post translational modifications (PTMs) are exploited by various pathogens in order to escape host immune responses. SUMOylation is one of the PTMs which is involved in regulation of a variety of cellular responses. However, the effects of host SUMOylation on pathogenic bacteria largely remain elusive. We, therefore, investigated the role of SUMOylation in regulating defense responses in dendritic cells (DCs) during mycobacterial infection. Dendritic Cells of female BALB/c mice and THP-1 macrophages were used. Western blotting was performed to measure the expression of level of SUMO1, pSTAT1, pp38, pERK, Beclin-1, LC3, Bax and Cytochrome C. For bacterial burden confocal microscopy and CFU (Colony Forming Unit) were used. Flow cytometry was used for ROS and co-stimulatory molecules measurement. Cytokine level were measured using ELISA. We show that stimulation of Bone Marrow Derived Dendritic Cells (BMDCs) with mycobacterial antigen Rv3416 or live infection with Mycobacterium bovis BCG increases the SUMOylation of host proteins. Inhibition of SUMOylation significantly decreased intracellular bacterial loads in DCs. Additionally, inhibiting SUMOylation, induces protective immune responses by increasing oxidative burst, pro-inflammatory cytokine expression and surface expression of T cell co-stimulatory molecules, and activation of pSTAT1 and Mitogen Activated Protein Kinases (MAPK) proteins- pp38 and pERK. SUMOylation inhibition also increased apoptosis and autophagy in BMDCs. Intriguingly, mycobacteria increased SUMOylation of many of the above molecules. Furthermore, inhibiting SUMOylation in DCs primed T cells that in turn attenuated bacterial burden in infected macrophages. These findings demonstrate that SUMOylation pathway is exploited by mycobacteria to thwart protective host immune responses.


Subject(s)
Mycobacterium Infections , Mycobacterium bovis , Animals , Mice , Female , Sumoylation , Cytokines/metabolism , Dendritic Cells
5.
Microbes Infect ; 25(6): 105126, 2023.
Article in English | MEDLINE | ID: mdl-36931492

ABSTRACT

Mycobacterium tuberculosis attenuates many defence responses from alveolar macrophages to create a niche at sites of infection in the human lung. Levels of Heat Shock Proteins have been reported to increase many folds in the serum of active TB patients than in latently infected individuals. Here we investigated the regulation of key defence responses by HSPs during mycobacterial infection. We show that infection of macrophages with M. bovis BCG induces higher expression of HSP-27 and HSP-70. Inhibiting HSP-27 and HSP-70 prior to mycobacterial infection leads to a significant decrease in mycobacterial growth inside macrophages. Further, inhibiting HSPs resulted in a significant increase in intracellular oxidative burst levels. This was accompanied by an increase in the levels of T cell activation molecules CD40 and IL-12 receptor and a concomitant decrease in the levels of T cell inhibitory molecules PD-L1 and IL-10 receptor. Furthermore, inhibiting HSPs significantly increased the expression of key proteins in the autophagy pathway along with increased activation of pro-inflammatory promoting transcription factors NF-κB and p-CREB. Interestingly, we also show that both HSP-27 and HSP-70 are associated with anti-apoptotic proteins Bcl-2 and Beclin-1. These results point towards a suppressive role for host HSP-27 and HSP-70 during mycobacterial infection.


Subject(s)
HSP27 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Macrophages , Mycobacterium Infections , Mycobacterium tuberculosis , Humans , Heat-Shock Proteins/metabolism , Macrophages/microbiology , Mycobacterium Infections/metabolism , Mycobacterium tuberculosis/pathogenicity , T-Lymphocytes , HSP70 Heat-Shock Proteins/immunology , HSP70 Heat-Shock Proteins/metabolism , HSP27 Heat-Shock Proteins/immunology , HSP27 Heat-Shock Proteins/metabolism
6.
Singapore medical journal ; : 237-243, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-984202

ABSTRACT

INTRODUCTION@#Falls from heights contribute to 34% of fatal accidents in Singapore. Of these, 51% of the accidents occur in the construction industry. This retrospective review, of all persons falling from heights in the construction industry from 2006 to 2012 and attending a major hospital, analysed injury patterns and related them to mechanisms and contributory factors.@*METHODS@#Information collected included injury and casualty characteristics, safety measures, pre-existing medical conditions and clinical outcomes.@*RESULTS@#Of 1,085 patients, 951 were male with a mean age of 39.8 years, mean height of 165.9 cm and mean weight of 69.7 kg. Most of the casualties fell between 0800 and 2000 hours. Among the severely injured patients, 2.4% had head injuries, 54.9% had chest injuries and 39.2% had abdominal and pelvic injuries. For these casualties, the mortality rate was 60.8%. For patients with less than major trauma, the commonest injuries were in the lower limbs (41.8%), upper limbs (40.8%) and spine (22.2%). All the casualties survived. Falls from scaffolding, formwork and platforms were the most common causes of severe injuries (41.1%). Safety helmets and harnesses were reported to be used in 1.8% and 4.1% of instances of falls, respectively.@*CONCLUSION@#Studying the patterns of injuries following falls at construction sites has the potential for injury prevention through safe practices, use of safety equipment and targeted training.


Subject(s)
Humans , Male , Adult , Female , Construction Industry , Craniocerebral Trauma/etiology , Protective Devices , Head Protective Devices , Retrospective Studies , Wounds and Injuries/etiology , Injury Severity Score
7.
Microbiol Res ; 263: 127146, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35940108

ABSTRACT

The sensing of environmental conditions such as nutrient availability and the ability to adapt and respond to changing conditions are crucial for the survival of living organisms. Evidence from several organisms have revealed that some metabolic enzymes act as sensors of nutrient status and regulate the expression of sets of genes required for nutrients utilization and condition specific environmental adaptation. Thus metabolic enzymes regulate the signaling pathway by acting as transcriptional regulators and providing required metabolites. The commensal yeast, Candida albicans has recently emerged as a model system for understanding the N-acetylglucosamine (GlcNAc) signaling pathway in eukaryotes. GlcNAc kinase (Hxk1), the first enzyme of the catabolic cascade, has been shown to perform several functions such as regulation of gene expression and regulation of the metabolic status of the cell thereby resulting in a change in cell morphology (yeast-hyphal transition, white-opaque switching), metabolic gene expression, synthesis of metabolic precursors, induction of glycolytic flux rate and biofilm formation. Here, in this review we have discussed various roles of Hxk1that have not been reported in other organisms previously. The enzyme exhibits dynamic changes in subcellular localization consistent with its expanded functions inside the cell. Thus Hxk1 in C. albicans orchestrates several dynamic cellular processes and this signaling system can act as a paradigm to understand the cell fate and metabolic specialization in other eukaryotes too. Still, the molecular cues involved in Hxk1 mediating functions are yet to be unveiled; the relationship between Hxk1 sensing and its signaling effects is also not understood yet.


Subject(s)
Candida albicans , Gene Expression Regulation, Fungal , Acetylglucosamine/genetics , Candida albicans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
8.
Biomol Concepts ; 12(1): 94-109, 2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34304400

ABSTRACT

We previously reported that M. tb on its own as well as together with HIV inhibits macrophage apoptosis by upregulating the expression of Bcl2 and Inhibitor of Apoptosis (IAP). In addition, recent reports from our lab showed that stimulation of either macrophages or BMDCs results in the significant upregulation of Bcl2. In this report, we delineate the role of Bcl2 in mediating defense responses from dendritic cells (BMDCs) during mycobacterial infection. Inhibiting Bcl2 led to a significant decrease in intracellular bacterial burden in BMDCs. To further characterize the role of Bcl2 in modulating defense responses, we inhibited Bcl2 in BMDCs as well as human PBMCs to monitor their activation and functional status in response to mycobacterial infection and stimulation with M. tb antigen Rv3416. Inhibiting Bcl2 generated protective responses including increased expression of co-stimulatory molecules, oxidative burst, pro-inflammatory cytokine expression and autophagy. Finally, co-culturing human PBMCs and BMDCs with antigen-primed T cells increased their proliferation, activation and effector function. These results point towards a critical role for Bcl2 in regulating BMDCs defense responses to mycobacterial infection.


Subject(s)
Dendritic Cells/immunology , Immunity , Macrophages/immunology , Mycobacterium Infections/immunology , Mycobacterium bovis/immunology , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Apoptosis , Autophagy , Cytokines/metabolism , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Dendritic Cells/pathology , Female , Humans , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Inbred BALB C , Mycobacterium Infections/metabolism , Mycobacterium Infections/microbiology , Mycobacterium Infections/pathology , Proto-Oncogene Proteins c-bcl-2/genetics
9.
J Biol Chem ; 297(1): 100727, 2021 07.
Article in English | MEDLINE | ID: mdl-33933457

ABSTRACT

The human fungal pathogen Candida albicans responds to iron deprivation by a global transcriptome reconfiguration known to be controlled by the transcriptional regulators Hap43 (also known as Cap2), Sef1, and the trimeric Hap2-Hap3-Hap5 complex. However, the relative roles of these regulators are not known. To dissect this system, we focused on the FRP1 and ACO1 genes, which are induced and repressed, respectively, under iron deprivation conditions. Chromatin immunoprecipitation assays showed that the trimeric HAP complex and Sef1 are recruited to both FRP1 and ACO1 promoters. While the HAP complex occupancy at the FRP1 promoter was Sef1-dependent, occupancy of Sef1 was not dependent on the HAP complex. Furthermore, iron deprivation elicited histone H3-Lys9 hyperacetylation and Pol II recruitment mediated by the trimeric HAP complex and Sef1 at the FRP1 promoter. In contrast, at the ACO1 promoter, the HAP trimeric complex and Hap43 promoted histone deacetylation and also limited Pol II recruitment under iron deprivation conditions. Mutational analysis showed that the SAGA subunits Gcn5, Spt7, and Spt20 are required for C. albicans growth in iron-deficient medium and for H3-K9 acetylation and transcription from the FRP1 promoter. Thus, the trimeric HAP complex promotes FRP1 transcription by stimulating H3K9Ac and Pol II recruitment and, along with Hap43, functions as a repressor of ACO1 by maintaining a deacetylated promoter under iron-deficient conditions. Thus, a regulatory network involving iron-responsive transcriptional regulators and the SAGA histone modifying complex functions as a molecular switch to fine-tune tight control of iron homeostasis gene expression in C. albicans.


Subject(s)
Candida albicans/metabolism , Chromatin/metabolism , Fungal Proteins/metabolism , Homeostasis , Iron/metabolism , Multiprotein Complexes/metabolism , Transcription, Genetic , Acetylation , Base Sequence , Binding Sites , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Histones/metabolism , Lysine/metabolism , Models, Genetic , Promoter Regions, Genetic , Protein Subunits/metabolism , RNA Polymerase II/metabolism , Transcription Factors/metabolism
10.
Cell Immunol ; 357: 104198, 2020 11.
Article in English | MEDLINE | ID: mdl-32877756

ABSTRACT

Calcium plays an important role in regulating cell physiology and immune responses to various pathogens. Our recent work has highlighted the crucial role for calcium homeostasis in dendritic cells and macrophages during various infections. Here we investigated the effect of calcium homeostasis in regulating T cell activation and function during mycobacterial infection. Results show that calcium homeostasis had varied effects in regulating T cell activation and function during mycobacterial infection. This included regulation of the expression of co-stimulatory molecules, cytokine profiles and effector function. A net negative role for Voltage Gated Calcium Channel (VGCC) was observed. Inhibiting VGCC in mycobacteria primed T cells induced increased production of pro-inflammatory cytokines and an increased effector phenotype. Infected macrophages when incubated with VGCC inhibited T cells, induced increased expression of co-stimulatory molecule expression on macrophages, increased the production of pro-inflammatory cytokines and increased autophagy and apoptosis. This collectively led to reduced survival of mycobacteria inside macrophages. The data point towards a fine regulation of protective responses by routes of calcium influx and release that mediate pathogen survival or clearance.


Subject(s)
Calcium/metabolism , Mycobacterium Infections/immunology , T-Lymphocytes/metabolism , Animals , Apoptosis/immunology , Autophagy/immunology , Calcium/immunology , Calcium Channels/metabolism , Cytokines/immunology , Female , Homeostasis , Interleukin-2/metabolism , Lymphocyte Activation/immunology , Macrophages/immunology , Mice , Mice, Inbred BALB C , Mycobacterium/pathogenicity , Mycobacterium tuberculosis/immunology , T-Lymphocytes/physiology , Tuberculosis/immunology
11.
Biomol Concepts ; 11(1): 76-85, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32271156

ABSTRACT

Interferon-gamma (IFN-γ) is a key cytokine that mediates immunity to tuberculosis (TB). Mycobacterium tuberculosis (M. tb) is known to downregulate the surface expression of IFN-γ receptor (IFN-γR) on macrophages and peripheral blood mononuclear cells (PBMCs) of patients with active TB disease. Many M. tb antigens also downmodulate IFN-γR levels in macrophages when compared with healthy controls. In the current study, we aimed at deciphering key factors involved in M. tb mediated downregulation of IFN-γR levels on macrophage surface. Our data showed that both M. tb H37Rv and M. bovis BCG infections mediate downmodulation of IFN-γR on human macrophages. This downmodulation is regulated at the level of TLR signaling pathway, second messengers such as calcium and cellular kinases i.e. PKC and ERK-MAPK, indicating that fine tuning of calcium response is critical to maintaining IFN-γR levels on macrophage surface. In addition, genes in the calcium and cysteine protease pathways which were previously identified by us to play a negative role during M. tb infection, also regulated IFN-γR expression. Thus, modulations in IFN-γR levels by utilizing host machinery may be a key immune suppressive strategy adopted by the TB pathogen to ensure its persistence and thwart host defense.


Subject(s)
Calcium/metabolism , Macrophages/metabolism , Macrophages/microbiology , Mycobacterium tuberculosis/physiology , Receptors, Interferon/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Line , Cytokines/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Female , Homeostasis , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Leukocytes, Mononuclear/metabolism , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Mice , Mice, Inbred BALB C , Mycobacterium bovis/physiology , Protein Kinase C/metabolism , RNA, Small Interfering , Receptors, Interferon/genetics , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Interferon gamma Receptor
12.
Cell Microbiol ; 22(7): e13200, 2020 07.
Article in English | MEDLINE | ID: mdl-32141690

ABSTRACT

Dengue virus (DENV) comprises of four serotypes (DENV-1 to -4) and is medically one of the most important arboviruses (arthropod-borne virus). DENV infection is a major human health burden and is transmitted between humans by the insect vector, Aedes aegypti. Ae. aegypti ingests DENV while feeding on infected humans, which traverses through its gut, haemolymph and salivary glands of the mosquito before being injected into a healthy human. During this process of transmission, DENV must interact with many proteins of the insect vector, which are important for its successful transmission. Our study focused on the identification and characterisation of interacting protein partners in Ae. aegypti to DENV. Since domain III (DIII) of envelope protein (E) is exposed on the virion surface and is involved in virus entry into various cells, we performed phage display library screening against domain III of the envelope protein (EDIII) of DENV-2. A peptide sequence showing similarity to lachesin protein was found interacting with EDIII. The lachesin protein was cloned, heterologously expressed, purified and used for in vitro interaction studies. Lachesin protein interacted with EDIII and also with DENV. Further, lachesin protein was localised in neuronal cells of different organs of Ae. aegypti by confocal microscopy. Blocking of lachesin protein in Ae. aegypti with anti-lachesin antibody resulted in a significant reduction in DENV replication.


Subject(s)
Aedes/metabolism , Aedes/virology , Dengue Virus/physiology , Quaternary Ammonium Compounds/metabolism , Virus Replication/physiology , Animals , Dengue/virology , Female , Immunoglobulins/chemistry , Mosquito Vectors/virology , Quaternary Ammonium Compounds/chemistry , Salivary Glands/metabolism , Salivary Glands/virology , Viral Envelope Proteins
13.
Biomol Concepts ; 11(1): 230-239, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33726488

ABSTRACT

Staphylococcus aureus (S. aureus) is a gram-positive bacteria, which causes various fatal respiratory infections including pneumonia. The emergence of Methicillin-Resistance Staphylococcus aureus (MRSA) demands a thorough understanding of host-pathogen interactions. Here we report the role of calcium in regulating defence responses of S. aureus in macrophages. Regulating calcium fluxes in cells by different routes differentially governs the expression of T cell costimulatory molecule CD80 and Th1 promoting IL-12 receptor. Inhibiting calcium influx from extracellular medium increased expression of IFN-γ and IL-10 while blocking calcium release from the intracellular stores inhibited TGF-ß levels. Blocking voltage-gated calcium channels (VGCC) inhibited the expression of multiple cytokines. While VGCC regulated the expression of apoptosis protein Bax, extracellular calcium-regulated the expression of Cytochrome-C. Similarly, VGCC regulated the expression of autophagy initiator Beclin-1. Blocking VGCC or calcium release from intracellular stores promoted phagosome-lysosome fusion, while activating VGCC inhibited phagosomelysosome fusion. Finally, calcium homeostasis regulated intracellular growth of Staphylococcus, although using different mechanisms. While blocking extracellular calcium influx seems to rely on IFN-γ and IL-12Rß receptor mediated reduction in bacterial survival, blocking either intracellular calcium release or via VGCC route seem to rely on enhanced autophagy mediated reduction of intracellular bacterial survival. These results point to fine-tuning of defence responses by routes of calcium homeostasis.


Subject(s)
Calcium/metabolism , Macrophages/metabolism , Protective Agents/metabolism , Staphylococcus aureus/growth & development , Animals , Cells, Cultured , Cytokines/analysis , Cytokines/biosynthesis , Homeostasis , Mice
14.
Nucleic Acids Res ; 47(11): 5852-5866, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31081026

ABSTRACT

Semi-autonomous functioning of mitochondria in eukaryotic cell necessitates coordination with nucleus. Several RNA species fine-tune mitochondrial processes by synchronizing with the nuclear program, however the involved components remain enigmatic. In this study, we identify a widely conserved dually localized protein Myg1, and establish its role as a 3'-5' RNA exonuclease. We employ mouse melanoma cells, and knockout of the Myg1 ortholog in Saccharomyces cerevisiae with complementation using human Myg1 to decipher the conserved role of Myg1 in selective RNA processing. Localization of Myg1 to nucleolus and mitochondrial matrix was studied through imaging and confirmed by sub-cellular fractionation studies. We developed Silexoseqencing, a methodology to map the RNAse trail at single-nucleotide resolution, and identified in situ cleavage by Myg1 on specific transcripts in the two organelles. In nucleolus, Myg1 processes pre-ribosomal RNA involved in ribosome assembly and alters cytoplasmic translation. In mitochondrial matrix, Myg1 processes 3'-termini of the mito-ribosomal and messenger RNAs and controls translation of mitochondrial proteins. We provide a molecular link to the possible involvement of Myg1 in chronic depigmenting disorder vitiligo. Our study identifies a key component involved in regulating spatially segregated organellar RNA processing and establishes the evolutionarily conserved ribonuclease as a coordinator of nucleo-mitochondrial crosstalk.


Subject(s)
Mitochondrial Proteins/metabolism , Nuclear Proteins/metabolism , Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Endoribonucleases/metabolism , Exonucleases/metabolism , Humans , Mice , Mitochondria/genetics , Mitochondria/metabolism , Protein Biosynthesis , Quality Control , RNA, Ribosomal/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA , Vitiligo/genetics
15.
mSphere ; 3(4)2018 08 01.
Article in English | MEDLINE | ID: mdl-30068562

ABSTRACT

Iron is required for growth and metabolism by virtually all organisms. The human fungal pathogen Candida albicans has evolved multiple strategies to acquire iron. The Cap2/Hap43 transcriptional regulator, essential for robust virulence of C. albicans, controls iron homeostasis gene expression by promoter binding and repression of iron utilization genes. The expression of iron uptake genes is also dependent on Cap2, although Cap2 was not recruited to its promoters. Cap2, bearing the conserved bipartite HAP4L-bZIP domain, also contains multiple blocks of amino acids that form the highly conserved carboxyl-terminal region. In this study, we sought to identify the requirements of the different domains for Cap2 function. We constructed a series of mutants bearing either point mutations or deletions in the conserved domains and examined Cap2 activity. Deletion of the highly conserved extreme C-terminal region did not impair expression of Cap2 mutant protein but impaired cell growth and expression of iron homeostasis genes under iron-depleted conditions. Mutations in the amino-terminal HAP4L and basic leucine zipper (bZIP) domains also impaired growth and gene expression. Furthermore, chromatin immunoprecipitation (ChIP) assays showed that the HAP4L domain and the bZIP domain are both essential for Cap2 recruitment to ACO1 and CYC1 promoters. Unexpectedly, the C-terminal conserved region was also essential for Cap2 promoter recruitment. Thus, our results suggest that Cap2 employs multiple evolutionarily conserved domains, including the C-terminal domain for its transcriptional activity.IMPORTANCE Iron is an essential micronutrient for living cells. Candida albicans, the predominant human fungal pathogen, thrives under diverse environments with vastly different iron levels in the mammalian host. Therefore, to tightly control iron homeostasis, C. albicans has evolved a set of transcriptional regulators that cooperate to either upregulate or downregulate transcription of iron uptake genes or iron utilization genes. Cap2/Hap43, a critical transcriptional regulator, contains multiple conserved protein domains. In this study, we carried out mutational analyses to identify the functional roles of the conserved protein domains in Cap2. Our results show that the bZIP, HAP4L, and the C-terminal domain are each required for Cap2 transcriptional activity. Thus, Cap2 employs multiple, disparate protein domains for regulation of iron homeostasis in C. albicans.


Subject(s)
Candida albicans/genetics , Fungal Proteins/genetics , Homeostasis/genetics , Iron/metabolism , Promoter Regions, Genetic , Candida albicans/pathogenicity , Chromatin Immunoprecipitation , Conserved Sequence , Gene Expression Regulation, Fungal , Transcription Factors/genetics , Virulence
16.
Biochem J ; 475(17): 2877-2891, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30049893

ABSTRACT

Complement system is the first line of human defence against intruding pathogens and is recognized as a potentially useful therapeutic target. Human malaria parasite Plasmodium employs a series of intricate mechanisms that enables it to evade different arms of immune system, including the complement system. Here, we show the expression of a multi-domain Plasmodium Complement Control Protein 1, PfCCp1 at asexual blood stages and its binding affinity with C3b as well as C4b proteins of human complement cascade. Using a biochemical assay, we demonstrate that PfCCp1 binds with complement factors and inhibits complement activation. Active immunization of mice with PfCCp1 followed by challenge with Plasmodium berghei resulted in the loss of biphasic growth of parasites and early death in comparison to the control group. The study also showed a role of PfCCp1 in modulating Toll-like receptor (TLR)-mediated signalling and effector responses on antigen-presenting cells. PfCCp1 binds with dendritic cells that down-regulates the expression of signalling molecules and pro-inflammatory cytokines, thereby dampening the TLR2-mediated signalling; hence acting as a potent immuno-modulator. In summary, PfCCp1 appears to be an important component of malaria parasite directed immuno-modulating strategies that promote the adaptive fitness of pathogens in the host.


Subject(s)
Dendritic Cells/immunology , Immunologic Factors/immunology , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Signal Transduction/immunology , Animals , Humans , Immunization , Mice , Mice, Inbred BALB C , Toll-Like Receptor 2/immunology
17.
FEBS J ; 285(8): 1491-1510, 2018 04.
Article in English | MEDLINE | ID: mdl-29485702

ABSTRACT

TAF6, bearing the histone H4-like histone-fold domain (HFD), is a subunit of the core TAF module in TFIID and SAGA transcriptional regulatory complexes. We isolated and characterized several yeast TAF6 mutants bearing amino acid substitutions in the HFD, the middle region or the HEAT repeat domain. The TAF6 mutants were highly defective for transcriptional activation by the Gcn4 and Gal4 activators. CHIP assays showed that the TAF6-HFD and the TAF6-HEAT domain mutations independently abrogated the promoter occupancy of TFIID and SAGA complex in vivo. We employed genetic and biochemical assays to identify the relative contributions of the TAF6 HFD and HEAT domains. First, the temperature-sensitive phenotype of the HEAT domain mutant was suppressed by overexpression of the core TAF subunits TAF9 and TAF12, as well as TBP. The HFD mutant defect, however, was suppressed by TAF5 but not by TAF9, TAF12 or TBP. Second, the HEAT mutant but not the HFD mutant was defective for growth in the presence of transcription elongation inhibitors. Third, coimmunoprecipitation assays using yeast cell extracts indicated that the specific TAF6 HEAT domain residues are critical for the interaction of core TAF subunits with the SAGA complex but not with TFIID. The specific HFD residues in TAF6, although required for heterodimerization between TAF6 and TAF9 recombinant proteins, were dispensable for association of the core TAF subunits with TFIID and SAGA in yeast cell extracts. Taken together, the results of our studies have uncovered the non-overlapping requirement of the evolutionarily conserved HEAT domain and the HFD in TAF6 for transcriptional activation.


Subject(s)
Gene Expression Regulation, Fungal , Mutation , Saccharomyces cerevisiae Proteins/genetics , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Transcriptional Activation , Binding Sites/genetics , DNA Mutational Analysis , Models, Molecular , Protein Domains , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , TATA-Binding Protein Associated Factors/chemistry , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/chemistry , Transcription Factor TFIID/metabolism
18.
J Leukoc Biol ; 102(5): 1249-1259, 2017 11.
Article in English | MEDLINE | ID: mdl-28877954

ABSTRACT

Microorganisms are known to devise various strategies to thwart protective responses by the host. One such strategy is to incorporate sequences and domains in their genes/proteins that have similarity to various domains of the host proteins. In this study, we report that Mycobacterium tuberculosis protein Rv3529c exhibits significant similarity to the death domain of the TLR pathway adaptor protein MyD88. Incubation of macrophages with Rv3529c specifically inhibited TLR2-mediated proinflammatory responses. This included attenuated oxidative burst, reduced phosphorylation of MAPK-ERK, reduced activation of transcription factor NF-κB and reduced secretion of proinflammatory cytokines IFN-γ, IL-6, and IL-17A with a concomitant increased secretion of suppressor cytokines IL-10 and TGF-ß. Importantly, Rv3529c significantly inhibited TLR2-induced association of MyD88 with IRAK1 by competitively binding with IRAK1. Further, Rv3529c mediated inhibition of apoptosis and phagosome-lysosome fusion. Lastly, incubation of macrophages with Rv3529c increased bacterial burden inside macrophages. The data presented show another strategy evolved by M. tuberculosis toward immune evasion that centers on incorporating sequences in proteins that are similar to crucial proteins in the innate immune system of the host.


Subject(s)
Bacterial Proteins/pharmacology , Immune Evasion , Macrophages/microbiology , Mycobacterium tuberculosis/immunology , Toll-Like Receptor 2/immunology , Animals , Bacterial Load , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Gene Expression Regulation , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lysosomes/drug effects , Lysosomes/immunology , Macrophages/drug effects , Macrophages/immunology , Membrane Fusion/drug effects , Membrane Fusion/immunology , Mice , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/immunology , Molecular Mimicry , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/pathogenicity , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Phagosomes/drug effects , Phagosomes/immunology , Primary Cell Culture , Protein Domains , Respiratory Burst/immunology , Signal Transduction , Toll-Like Receptor 2/antagonists & inhibitors , Toll-Like Receptor 2/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology
20.
Sci Rep ; 7(1): 9860, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852211

ABSTRACT

In vitiligo, chronic loss of melanocytes and consequent absence of melanin from the epidermis presents a challenge for long-term tissue maintenance. The stable vitiligo patches are known to attain an irreversible depigmented state. However, the molecular and cellular processes resulting in this remodeled tissue homeostasis is unclear. To investigate the complex interplay of inductive signals and cell intrinsic factors that support the new acquired state, we compared the matched lesional and non-lesional epidermis obtained from stable non-segmental vitiligo subjects. Hierarchical clustering of genome-wide expression of transcripts surprisingly segregated lesional and non-lesional samples in two distinct clades, despite the apparent heterogeneity in the lesions of different vitiligo subjects. Pathway enrichment showed the expected downregulation of melanogenic pathway and a significant downregulation of cornification and keratinocyte differentiation processes. These perturbations could indeed be recapitulated in the lesional epidermal tissue, including blunting of rete-ridges, thickening of stratum corneum and increase in the size of corneocytes. In addition, we identify marked increase in the putrescine levels due to the elevated expression of spermine/spermidine acetyl transferase. Our study provides insights into the intrinsic self-renewing ability of damaged lesional tissue to restore epidermal functionality in vitiligo.


Subject(s)
Disease Susceptibility , Epidermis/metabolism , Epidermis/pathology , Transcriptome , Vitiligo/etiology , Vitiligo/pathology , Adult , Biomarkers , Computational Biology/methods , Epidermis/ultrastructure , Female , Gene Expression Profiling , Gene Regulatory Networks , Humans , Immunohistochemistry , Male , Middle Aged , Vitiligo/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...