Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Biol Interact ; 397: 111084, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38823537

ABSTRACT

Kaempferol is major flavonoid present in Convolvulus pluricaulis. This phytochemical protects the brain against oxidative stress, neuro-inflammation, neurotoxicity, neurodegeneration and cerebral ischemia induced neuronal destruction. Kaempferol is poorly water soluble. Our study proved that solid lipid nanoparticles (SLNs) were efficient carrier of kaempferol through blood-brain barrier (BBB). Kaempferol was incorporated into SLNs prepared from stearic acid with polysorbate 80 by the process of ultrasonication. Mean particle size and zeta potential of kaempferol loaded solid lipid nanoparticles (K-SLNs) were 451.2 nm and -15.0 mV. Atomic force microscopy showed that K-SLNs were spherical in shape. Fourier transformed infrared microscopy (FTIR) showed that both stearic acid and kaempferol were present in K-SLNs. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) revealed that the matrices of K-SLNs were in untidy crystalline state. Entraptment efficiency of K-SLNs was 84.92%. In-vitro drug release percentage was 93.24%. Kaempferol loaded solid lipid nanoparticles (K-SLNs) showed controlled release profile. In-vitro uptake study showed significant efficiency of K-SLNs to cross blood-brain barrier (BBB). After oral administration into the focal cerebral ischemic rat, accumulation of fluorescent labeled K-SLNs was observed in the brain cortex which confirmed its penetrability into the brain. It significantly decreased the neurological deficit, infarct volume and level of reactive oxygen species (ROS) and decreased the level of pro-inflammatory mediators like NF-κB and p-STAT3. Damaged neurons and brain texture were improved. This study indicated increased bioavailability of kaempferol into the brain tissue through SLNs formulation.


Subject(s)
Blood-Brain Barrier , Brain Ischemia , Kaempferols , Nanoparticles , Animals , Kaempferols/chemistry , Kaempferols/administration & dosage , Kaempferols/pharmacology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Nanoparticles/chemistry , Rats , Male , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Lipids/chemistry , Brain/metabolism , Brain/drug effects , Brain/pathology , Drug Carriers/chemistry , Particle Size , Rats, Wistar , Drug Liberation , NF-kappa B/metabolism , Liposomes
2.
Nutr Neurosci ; : 1-11, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808704

ABSTRACT

OBJECTIVES: The two flavonoids kaempferol and chrysin are known to possess anti-inflammatory and antioxidant activities. In addition, these two flavonoids were reported to display synergistic effects against inflammation. The present study aims to provide an analysis of the combined effects of kaempferol and chrysin on ischemic rat brain induced by endothelin-1. METHODS: The neurological deficit score and infarct area of the brain were determined post drug treatment. Histopathological sections displayed the morphological changes in the brain tissue. The brain tissues were processed for assessing the antioxidant and anti-inflammatory activity by measuring superoxide dismutase activity, catalase activity, level of reduced glutathione, brain malondialdehyde, and amount of calcium. The expression level of inflammatory molecules was analyzed by western blotting and immunohistochemistry. RESULTS: The infarct area, neurological score and NF-κB and STAT3 expression levels were significantly reduced. DISCUSSION: The analysis of neuroprotective synergistic activity of kaempferol and chrysin indicated the therapeutic potential of the combination in alleviating cerebral ischemia by controlling expression of proinflammatory mediators.

3.
Theriogenology ; 192: 122-131, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36088809

ABSTRACT

Citrate-coated silver nanoparticles were synthesized in one step method using tri-sodium citrate and silver nitrate at pH 6.1. After synthesis, the resulting silver nano-suspension was characterized using UV-visible spectroscopy, dynamic light scattering, high resolution-scanning electron microscopy, energy dispersive x-ray spectroscopy and fourier transform infrared-spectroscopy. The particles were intraperitoneally injected into Swiss albino male mice for a period of one complete spermatogenic cycle. The LD50 was determined following the procedure of Dixon's Up-and-Down method. The intra-testicular level of silver was measured using the technique of inductively coupled plasma-mass spectrometry. The intra-testicular location of accumulated nanoparticles was observed using auto-metallography. The cytology and volume of Leydig cells were assessed and analysed. Following the exposure to silver nanoparticles, it was found that accumulation of nanoparticles inside the seminiferous tubules is a dose-dependent process. The deposition of silver agglomerate induced morphometric changes in the lumen of seminiferous tubules and Leydig cells. The exposure also caused significant changes at the level of structural integrity of sperm chromatin material and variable damages to sperm DNA.


Subject(s)
Metal Nanoparticles , Silver Nitrate , Animals , Chromatin , DNA , Leydig Cells , Male , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Mice , Plant Extracts/pharmacology , Semen , Seminiferous Tubules , Silver , Silver Nitrate/chemistry , Sodium Citrate , Spermatozoa
4.
Redox Biol ; 43: 101965, 2021 07.
Article in English | MEDLINE | ID: mdl-33933881

ABSTRACT

Excessive ingestion of the common analgesic acetaminophen (APAP) leads to severe hepatotoxicity. Here we identify G protein ß5 (Gß5), elevated in livers from APAP overdose patients, as a critical regulator of cell death pathways and autophagic signaling in APAP-exposed liver. Liver-specific knockdown of Gß5 in mice protected the liver from APAP-dependent fibrosis, cell loss, oxidative stress, and inflammation following either acute or chronic APAP administration. Conversely, overexpression of Gß5 in liver was sufficient to drive hepatocyte dysfunction and loss. In hepatocytes, Gß5 depletion ameliorated mitochondrial dysfunction, allowed for maintenance of ATP generation and mitigated APAP-induced cell death. Further, Gß5 knockdown also reversed impacts of APAP on kinase cascades (e.g. ATM/AMPK) signaling to mammalian target of rapamycin (mTOR), a master regulator of autophagy and, as a result, interrupted autophagic flux. Though canonically relegated to nuclear DNA repair pathways, ATM also functions in the cytoplasm to control cell death and autophagy. Indeed, we now show that Gß5 forms a direct, stable complex with the FAT domain of ATM, important for autophosphorylation-dependent kinase activation. These data provide a viable explanation for these novel, G protein-independent actions of Gß5 in liver. Thus, Gß5 sits at a critical nexus in multiple pathological sequelae driving APAP-dependent liver damage.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Chemical and Drug Induced Liver Injury/metabolism , GTP-Binding Proteins/metabolism , Hepatocytes , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL , Oxidative Stress
5.
Pharmacogn Mag ; 13(Suppl 2): S216-S223, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28808383

ABSTRACT

BACKGROUND: Saraca asoca (SA) (Roxb.) is one of the folk medicinal plants found in India, Bangladesh, and Sri Lanka. Its major biological activity appears due to the presence of flavonoid group of compounds in its bark extract. OBJECTIVE: In this study, our research aims to analyze the chemopreventive effect of flavonoids, especially a natural phenol catechin present in the bark methanolic extract of SA on acute myeloid leukemia (AML) mice. MATERIALS AND METHODS: The total bark extract was partitioned and analyzed on thin-layer chromatography (TLC) plate. The yellow-brown material of spot 4 was analyzed and identified as catechin. The yellowish brown material (YBM) was tested for their chemopreventive potential. An in vivo AML mice model was used to test the efficacy. Hematological parameters (Hb %, red blood cell, and white blood cell count), expression of cell cycle regulatory proteins, and DNA fragmentation analysis were performed. RESULTS: After treatment of benzene-exposed mice with the major flavonoid compound, namely catechin, the above parameters increase significantly (P < 0.05). There was an upregulation of p53 and p21, caspase 11 myeloperoxidase, bcl2, and CYP2EI in catechin-treated group. DNA was less fragmented in flavonoid-treated group compared to that of control (P ≤ 0.05). The present study indicates that the secondary metabolites of SA methanolic bark extract, comprising flavonoid catechin as major constituents, have modulatory effect in cell cycle deregulation and hematological abnormalities induced by benzene in mice. CONCLUSIONS: Our data suggest that catechin from methanolic bark extract of SA effectively attenuates benzene-induced secondary AML in bone marrow, which is likely associated with the anticell cycle deregulation properties of this flavan-3-ol. This study was supported by the observation that catechin (YBM), like doxorubicin, can act as the neutralizer and protector of mortality in cancer cases. SUMMARY: The catechin from methanolic bark extract of Saraca asoca has chemoprotective activity in benzene-induced secondary acute myeloid leukemia.(AML) in bone marrowHematological parameters, structural analysis of DNA showed that the purified catechin attenuates the conditions responsible for the development of AMLThe purified flavonol, catechin has a modulatory effect on different cell cycle deregulations induced by benzene in AML model.

6.
Chem Biol Interact ; 242: 281-9, 2015 Dec 05.
Article in English | MEDLINE | ID: mdl-26485141

ABSTRACT

Chronic exposure to arsenic over a period of time induces toxicity, primarily in liver but gradually in all systems of the body. Andrographolide (AG), a major diterpene lactone of Andrographis paniculata, shows a wide array of physiological functions including hepatoprotection. Therapeutic applications of AG are however seriously constrained because of its insolubility, poor bioavailability, and short plasma half-life. Nanoparticulation of AG is a possible solution to these problems. In the present study we investigated the effectiveness of polylactide co-glycolide (PLGA) nanocapsulated andrographolide (NA) against arsenic induced liver damage in mice. NA of average diameter 65.8 nm and encapsulation efficiency of 64% were prepared. Sodium arsenite at a dose of 40 mg/L supplied via drinking water in mice significantly raised the serum level of liver function markers such as AST, ALT, and ALP, and caused arsenic deposition in liver and ROS generation, though it did not show any lethality up to 30 days of exposure. However, even liver toxicity was not observed when mice were given AG and NA orally at doses up to 100 mg/kg bwt and 20 mg/kg bwt respectively on alternate days for one month. Treatment of non-toxic doses of AG or NA on alternate days along with arsenic significantly decreased the arsenic induced elevation of the serum level of ALT, AST and ALP, and arsenic deposition in liver. AG and NA increased the level of hepatic antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), and the level of reduced glutathione (GSH). Also, the ROS level was lowered in mice exposed to arsenic but treated with AG or NA. Protective efficiency of NA is about five times more than that of AG. Administration of NA to arsenic-treated mice caused signs of improvement in liver tissue architecture. In conclusion, the results of this study suggest that NA could be beneficial against arsenic-induced liver toxicity.


Subject(s)
Arsenic/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , Cytoprotection/drug effects , Diterpenes/chemistry , Diterpenes/pharmacology , Nanocapsules/chemistry , Animals , Antioxidants/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemistry, Pharmaceutical , Diterpenes/metabolism , Lactic Acid/chemistry , Mice , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer
7.
Environ Toxicol Pharmacol ; 37(1): 378-89, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24440606

ABSTRACT

Benzene, designated as environmental and occupational carcinogen and hematotoxin, has been associated with secondary leukemia. To develop a toxicokinetic model of AML, benzene can be used as leukemogenic agent. The aim of the present study was to optimize the dose, period and time of cumulative benzene exposure of Swiss Albino mice and to analyze survival rate; alteration in cell cycle regulation and other clinical manifestations in mice exposed to benzene vapour at a dose 300 ppm × 6 h/day × 5 days/week for 2 weeks, i.e., 9000(a)ppm cumulative dose. Analyzing physiological parameters like plasma enzyme profile, complete hematology (Hb %, RBC indices and WBC differentials), hematopoietic cells morphology, expression of cell cycle regulatory proteins, tissue histology and analysis of DNA fragmentation, optimum conditions were established. Down regulation of p53 and p21 and up regulation of CDK2, CDK4, CDK6, cyclin D1 and E in this exposed group were marked as the optimum conditions of cellular deregulation for the development of secondary AML. Elevated level of Plasma AST/ALT with corresponding changes in liver histology showing extended sinusoids within the hepatocytic cell cords in optimally exposed animals also confirmed the toxicokinetic relation of benzene with leukemia. It can be concluded from the above observations that the 9000(a)ppm exposed animals can serve as the induced laboratory model of secondary acute myeloid leukemia.


Subject(s)
Benzene/toxicity , Carcinogens/toxicity , Disease Models, Animal , Leukemia, Myeloid, Acute , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Bone Marrow Cells/drug effects , Bone Marrow Cells/pathology , Cell Cycle Proteins/metabolism , Chromosome Aberrations/chemically induced , DNA Fragmentation , Erythrocyte Indices/drug effects , Hematocrit , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukocyte Count , Liver/pathology , Male , Mice
8.
Environ Toxicol Pharmacol ; 36(3): 997-1014, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24095717

ABSTRACT

The development of eco-friendly technologies in material synthesis is of considerable importance to expand their biological applications. Nowadays, a variety of green nanoparticles with well-defined chemical composition, size, and morphology have been synthesized by different methods and their applications in many cutting-edge technological areas have been explored. This review highlights the classification of nanoparticles giving special emphasis on biosynthesis of metal nanoparticle by viable organisms. It also focuses on the applications of these biosynthesized nanoparticles in a wide spectrum of potential areas of medical biology including catalysis, targeted drug delivery, cancer treatment, antibacterial agents and as biosensors.


Subject(s)
Green Chemistry Technology/trends , Nanotechnology/trends , Animals , Biomimetics , Environmental Restoration and Remediation , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/classification , Metal Nanoparticles/therapeutic use , Nanoparticles/chemistry , Nanoparticles/classification
9.
ISRN Urol ; 2012: 789105, 2012.
Article in English | MEDLINE | ID: mdl-22567425

ABSTRACT

Our recent studies have described for the first time the purification of an ectoprotein kinase to apparent homogeneity using caprine sperm as the model. Purified ectokinase (CIK) is a novel membrane protein-specific kinase that phosphorylates serine and threonine residues of ectophosphoproteins. This study, using ELISA based on ecto-CIK antibody demonstrates that ecto-CIK level is remarkably higher in the sperm membrane than in the cytosol. The epididymal sperm maturational event as well as sperm vertical velocity is associated with a significant increase in the ecto-CIK level. Ecto-CIK, the membrane protein-specific kinase, is also present in all the tissues tested and is predominantly localized in the cell membrane. Ubiquitous localization of the novel kinase on the mammalian cell membrane suggests that the kinase may play pivotal role in gamete as well as somatic cell regulation by modulating membrane biology through serine/threonine phosphorylation of specific membrane proteins located in the ectodomains.

10.
J Cell Physiol ; 220(2): 394-400, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19365805

ABSTRACT

Previously we have purified and characterized a unique plasma membrane-specific cyclic AMP-independent ecto-protein kinase (ecto-CIK) as well as its ecto-phosphoprotein substrate (MPS) using caprine sperm model. This study reports for the first time the role of the sperm external surface protein phosphorylation system on sperm acrosome reaction, which is essential for fertilization. Calcium ionophore A23187 has been used to trigger the sperm acrosome reaction in vitro. Treatment of sperm cells with CIK antibody (dil: 1:500) causes a significant decrease (approx. 50%) in percentage of acrosome reacted sperm. Onset of the acrosome reaction causes a remarkable increase in the rate of acrosin release from the cells in the medium. However, CIK antibody inhibits significantly (approx. 50%) the acrosin release. The level of membrane-bound MPS as estimated by ELISA and the degree of its phosphorylation catalyzed by the endogenous ecto-CIK, increase significantly with the progress of the acrosome reaction. Both the parameters increase by approximately 100% during the 20 min of the reaction. MPS antibody (1:100 dilution) markedly decreases (approx. 75%) percentage of acrosome-reacted sperm. MPS antibody as well shows high efficacy to inhibit acrosin release from spermatozoa. The results demonstrate that the cell-surface protein kinase and its protein substrate are essential for membrane fusion component of acrosome reaction. The data are consistent with the view that MPS regulates acrosomal membrane fusion with the overlying plasma membrane by the mechanism of its phosphorylation and dephosphorylation.


Subject(s)
Acrosome Reaction/physiology , Cell Membrane/metabolism , Membrane Fusion/physiology , Protein Kinases/metabolism , Spermatozoa , Acrosin/metabolism , Animals , Goats , Male , Protein Kinases/genetics , Sperm Motility/physiology , Spermatozoa/cytology , Spermatozoa/enzymology
11.
Biochim Biophys Acta ; 1778(1): 153-65, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18083139

ABSTRACT

Since 1976 many studies have been reported on the occurrence and functional significance of ecto-protein kinases in a variety of cell types although their precise biochemical identity is largely unknown. This study reports for the first time purification to apparent homogeneity of an ecto-protein kinase (ecto-CIK) and some of its characteristics using caprine sperm as the cell model. The ecto-CIK is a unique membrane-specific serine/threonine protein kinase. It is a strongly basic 115 kDa protein made up of two subunits: 63 and 55 kDa. The ecto-kinase undergoes a remarkable lateral movement on the outer cell surface culminating in capping on the sperm acrosomal tip. MPS, its major protein substrate is also located on the acrosomal tip. Both ecto CIK and MPS serve as potential regulators of flagellar motility. This novel enzyme appears to be major kinase responsible for the reported regulation of mammalian cellular functions by modulating phosphorylation of the membrane-bound proteins.


Subject(s)
Goats/metabolism , Protein Kinases/metabolism , Spermatozoa/cytology , Spermatozoa/enzymology , Amino Acids/metabolism , Animals , Antibody Specificity , Caseins/metabolism , Cell Membrane/enzymology , Diphosphates/metabolism , Electrophoresis, Polyacrylamide Gel , Fluorescent Antibody Technique , Isoelectric Focusing , Male , Membrane Proteins/metabolism , Nucleotides/metabolism , Phospholipids/metabolism , Phosphorylation , Protein Kinases/isolation & purification , Protein Transport , Spectrophotometry , Sperm Motility , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...