Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geohealth ; 4(12): e2020GH000305, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33344871

ABSTRACT

Coronavirus Disease 2019 (COVID-19) pandemic poses extreme threat to public health and economy, particularly to the nations with higher population density. The disease first reported in Wuhan, China; later, it spreads elsewhere, and currently, India emerged as COVID-19 hotspot. In India, we selected 20 densely populated cities having infection counts higher than 500 (by 15 May) as COVID-19 epicenters. Daily COVID-19 count has strong covariability with local temperature, which accounts approximately 65-85% of the explained variance; i.e., its spread depends strongly on local temperature rise prior to community transmission phase. The COVID-19 cases are clustered at temperature and humidity ranging within 27-32°C and 25-45%, respectively. We introduce a combined temperature and humidity profile, which favors rapid COVID-19 growth at the initial phase. The results are highly significant for predicting future COVID-19 outbreaks and modeling cities based on environmental conditions. On the other hand, CO2 emission is alarmingly high in South Asia (India) and entails high risk of climate change and extreme hot summer. Zoonotic viruses are sensitive to warming induced climate change; COVID-19 epicenters are collocated on CO2 emission hotspots. The COVID-19 count distribution peaks at 31.0°C, which is 1.0°C higher than current (2020) and historical (1961-1990) mean, value. Approximately, 72% of the COVID-19 cases are clustered at severe to record-breaking hot extremes of historical temperature distribution spectrum. Therefore, extreme climate change has important role in the spread of COVID-19 pandemic. Hence, a strenuous mitigation measure to abate greenhouse gas (GHG) emission is essential to avoid such pandemics in future.

2.
Sci Rep ; 8(1): 18047, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30575779

ABSTRACT

The summer surface air temperature (SAT) in the Humid Subtropical Climate Zone in India, exhibits a significant cooling trend (~-3 °C/40 yrs.) in CRU observational data during 1961-2000. Here we investigate the contribution of internal and external factors, which are driving this cooling trend. Using the Community Earth System Model-Large Ensemble (CESM-LE), we analyze the historical climate change in presence of internal climate variability. Most of the model ensemble members could reproduce this amplified cooling (<-3 °C) as shown from CRU data. Further analyses reveals that external forcing displays a strong cooling effect over this region, while internal variability displays mixed cooling (in most cases) and warming signals. The signal to noise ratio i.e. the ratio of external forcings and internal climatic variability is less than 1, which indicates that internal climatic variability dominates over the forced response. Furthermore, to quantify the role of different external forcing factors we used the CCSM4 single forcing simulations. The simulation results from CESM-LE and CCSM4 suggest that the cooling trend over the region is primarily due to the combined influence of internal variability (~73%) and partly due to aerosol (~10%) and ozone only forcing, which strongly mask the warming effect of GHG and solar forcing.

3.
Sci Rep ; 6: 21370, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26868836

ABSTRACT

Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals.

SELECTION OF CITATIONS
SEARCH DETAIL
...