Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Addict Biol ; 27(2): e13126, 2022 03.
Article in English | MEDLINE | ID: mdl-35229935

ABSTRACT

Alcohol use disorders are complex, multifactorial phenomena with a large footprint within the global burden of diseases. Here, we report the development of an accessible, two-choice self-administration zebrafish assay (SAZA) to study the neurobiology of addiction. Using this assay, we first demonstrated that, although zebrafish avoid higher concentrations of alcohol, they are attracted to low concentrations. Pre-exposure to alcohol did not change this relative preference, but acute exposure to an alcohol deterrent approved for human use decreased alcohol self-administration. A pigment mutant used in whole-brain imaging studies displayed a similar relative alcohol preference profile; however, mutants in CCSER1, a gene associated with alcohol dependence in human genetic studies, showed a reversal in relative preference. The presence of a biphasic response (hormesis) in zebrafish validated a key aspect of vertebrate responses to alcohol. SAZA adds a new dimension for discovering novel alcohol deterrents and studying the neurogenetics of addiction using the zebrafish.


Subject(s)
Alcoholism , Behavior, Addictive , Alcoholism/genetics , Animals , Ethanol/pharmacology , Humans , Self Administration , Zebrafish
2.
Endocrinology ; 153(5): 2398-407, 2012 May.
Article in English | MEDLINE | ID: mdl-22454151

ABSTRACT

The Kiss1/KISS1 gene has recently been implicated as a potent hypothalamic regulator of reproductive functions, in particular, the onset of puberty in mammals. In zebrafish (Danio rerio), there are two kiss1 homologues (kiss1 and kiss2) expressed in the brain: Kiss2-expressing neurons in the hypothalamic nuclei are considered potent regulators of reproduction, whereas the role of Kiss1-expressing neurons in the habenula remains unknown. We first analyzed the expression of kiss1 mRNA in a transgenic zebrafish, in which the habenula-interpeduncular nucleus (IPN) pathway is labelled with green fluorescent protein, and our application of a biocytin neural tracer into the habenula showed the presence of neuronal projections of Kiss1 neurons to the ventral IPN. Therefore, we speculated that kiss1 neurons might regulate the serotonergic system in the raphe. However, laser microdissection followed by real-time PCR revealed the expression of Kiss1 receptor (kissr1) mRNA in the habenula and the ventral IPN but not in the dorsal IPN or the serotonergic neurons in the raphe nuclei. Dual-fluorescent in situ hybridization revealed the coexpression of kiss1 and kissr1 mRNA in the habenula. Administration of Kiss1 significantly decreased the level of kiss1 mRNA (0.3- to 0.5-fold, P < 0.001), but the level of c-fos mRNA was increased (≈ 3-fold, P < 0.05) in the ventral habenula, suggesting that there is autocrine regulation of the kiss1 gene. Kiss1 administration significantly increased the c-fos mRNA levels in the raphe nuclei (2.5-fold, P < 0.001) and genes involved in the regulation of serotonin levels (pet1 and slc6a4a; 3.3- and 2.2-fold, P < 0.01). These findings suggest that the autocrine-regulated habenular Kiss1 neurons indirectly regulate the serotonergic system in the raphe nuclei through the IPN in the zebrafish.


Subject(s)
Brain/metabolism , Habenula/metabolism , Kisspeptins/metabolism , Receptors, G-Protein-Coupled/metabolism , Serotonergic Neurons/metabolism , Zebrafish Proteins/metabolism , Animals , Brain/drug effects , Female , Habenula/drug effects , Kisspeptins/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Raphe Nuclei/drug effects , Raphe Nuclei/metabolism , Receptors, Kisspeptin-1 , Serotonergic Neurons/drug effects , Zebrafish , Zebrafish Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...