Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Technol Health Care ; 29(1): 99-109, 2021.
Article in English | MEDLINE | ID: mdl-32568131

ABSTRACT

BACKGROUND: Human facial muscles react differently to different visual stimuli. It is known that the human brain controls and regulates the activity of the muscles. OBJECTIVE: In this research, for the first time, we investigate how facial muscle reaction is related to the reaction of the human brain. METHODS: Since both electromyography (EMG) and electroencephalography (EEG) signals, as the features of muscle and brain activities, contain information, we benefited from the information theory and computed the Shannon entropy of EMG and EEG signals when subjects were exposed to different static visual stimuli with different Shannon entropies (information content). RESULTS: Based on the obtained results, the variations of the information content of the EMG signal are related to the variations of the information content of the EEG signal and the visual stimuli. Statistical analysis also supported the results indicating that the visual stimuli with greater information content have a greater effect on the variation of the information content of both EEG and EMG signals. CONCLUSION: This investigation can be further continued to analyze the relationship between facial muscle and brain reactions in case of other types of stimuli.


Subject(s)
Electroencephalography , Facial Muscles , Brain , Electromyography , Entropy , Humans
2.
Technol Health Care ; 28(6): 675-684, 2020.
Article in English | MEDLINE | ID: mdl-32200366

ABSTRACT

BACKGROUND: Walking is one of the important actions of the human body. For this purpose, the human brain communicates with leg muscles through the nervous system. Based on the walking path, leg muscles act differently. Therefore, there should be a relation between the activity of leg muscles and the path of movement. OBJECTIVE: In order to address this issue, we analyzed how leg muscle activity is related to the variations of the path of movement. METHOD: Since the electromyography (EMG) signal is a feature of muscle activity and the movement path has complex structures, we used entropy analysis in order to link their structures. The Shannon entropy of EMG signal and walking path are computed to relate their information content. RESULTS: Based on the obtained results, walking on a path with greater information content causes greater information content in the EMG signal which is supported by statistical analysis results. This allowed us to analyze the relation between muscle activity and walking path. CONCLUSION: The method of analysis employed in this research can be applied to investigate the relation between brain or heart reactions and walking path.


Subject(s)
Leg , Walking , Electromyography , Humans , Muscle, Skeletal
3.
Technol Health Care ; 28(4): 381-390, 2020.
Article in English | MEDLINE | ID: mdl-31796717

ABSTRACT

BACKGROUND: The human brain controls all actions of the body. Walking is one of the most important actions that deals with the movement of the body. In fact, the brain controls and regulates human walking based on different conditions. One of the conditions that affects human walking is the complexity of path of movement. Therefore, the brain activity should change when a person walks on a path with different complexities. OBJECTIVE: In this research we benefit from fractal analysis to study the effect of complexity of path of movement on the complexity of human brain reaction. METHODS: For this purpose we calculate the fractal dimension of the electroencephalography (EEG) signal when subjects walk on different paths with different fractal dimensions (complexity). RESULTS: The results of the analysis show that the complexity of brain activity increases with the increment of complexity of path of movement. CONCLUSION: The method of analysis employed in this research can also be employed to analyse the reaction of the human heart and respiration when subjects move on paths with different complexities.


Subject(s)
Walking , Brain , Electroencephalography , Fractals , Humans
4.
Comput Methods Programs Biomed ; 184: 105293, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31887618

ABSTRACT

BACKGROUND AND OBJECTIVE: Human body is covered with skin in different parts. In fact, skin reacts to different changes around human. For instance, when the surrounding temperature changes, human skin will react differently. It is known that the activity of skin is regulated by human brain. In this research, for the first time we investigate the relation between the activities of human skin and brain by mathematical analysis of Galvanic Skin Response (GSR) and Electroencephalography (EEG) signals. METHOD: For this purpose, we employ fractal theory and analyze the variations of fractal dimension of GSR and EEG signals when subjects are exposed to different olfactory stimuli in the form of pleasant odors. RESULTS: Based on the obtained results, the complexity of GSR signal changes with the complexity of EEG signal in case of different stimuli, where by increasing the molecular complexity of olfactory stimuli, the complexity of EEG and GSR signals increases. The results of statistical analysis showed the significant effect of stimulation on variations of complexity of GSR signal. In addition, based on effect size analysis, fourth odor with greatest molecular complexity had the greatest effect on variations of complexity of EEG and GSR signals. CONCLUSION: Therefore, it can be said that human skin reaction changes with the variations in the activity of human brain. The result of analysis in this research can be further used to make a model between the activities of human skin and brain that will enable us to predict skin reaction to different stimuli.


Subject(s)
Brain/physiology , Skin Physiological Phenomena , Smell , Electroencephalography/methods , Female , Galvanic Skin Response , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL