Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12830, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553472

ABSTRACT

Grouper culture has been expanding in Malaysia due to the huge demand locally and globally. However, due to infectious diseases such as vibriosis, the fish mortality rate increased, which has affected the production of grouper. Therefore, this study focuses on the metabolic profiling of surviving infected grouper fed with different formulations of fatty acid diets that acted as immunostimulants for the fish to achieve desirable growth and health performance. After a six-week feeding trial and one-week post-bacterial challenge, the surviving infected grouper was sampled for GC-MS analysis. For metabolite extraction, a methanol/chloroform/water (2:2:1.8) extraction method was applied to the immune organs (spleen and liver) of surviving infected grouper. The distribution patterns of metabolites between experimental groups were then analyzed using a metabolomics platform. A total of 50 and 81 metabolites were putatively identified from the spleen and liver samples, respectively. Our further analysis identified glycine, serine, and threonine metabolism, and alanine, aspartate and glutamate metabolism had the most impacted pathways, respectively, in spleen and liver samples from surviving infected grouper. The metabolites that were highly abundant in the spleen found in these pathways were glycine (20.9%), l-threonine (1.0%) and l-serine (0.8%). Meanwhile, in the liver l-glutamine (1.8%) and aspartic acid (0.6%) were found to be highly abundant. Interestingly, among the fish diet groups, grouper fed with oleic acid diet produced more metabolites with a higher percent area compared to the control diets. The results obtained from this study elucidate the use of oleic acid as an immunostimulant in fish feed formulation affects more various immune-related metabolites than other formulated feed diets for vibriosis infected grouper.


Subject(s)
Bass , Fish Diseases , Vibrio Infections , Vibrio vulnificus , Animals , Oleic Acid , Diet , Vibrio Infections/veterinary , Animal Feed/analysis
2.
Biology (Basel) ; 11(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36138767

ABSTRACT

Aquaculture has been expanding in Malaysia due to the increased demand for fish products. In addition, aquaculture faces challenges in maintaining feed suitability in support of the global growth of fish production. Therefore, improvements in diet formulation are necessary to achieve the optimal requirements and attain a desirable growth efficiency and health performance in fish. Seven weeks of study were conducted to compare the equal amounts of different fatty acids (2%) (oleic acid, stearic acid, palmitic acid, and behenic acid) on the survival, the growth, and the immune response of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) against V. vulnificus. After six weeks of the feeding trial, fish were challenged with V. vulnificus for 30 min before continuing on the same feeding regime for the next seven days (post-bacterial challenge). Fish supplemented with dietary oleic acid showed significantly (p < 0.05) enhanced immune responses, i.e., lysozyme, respiratory burst, and phagocytic activities compared to the control diet group for both pre-and post-bacterial challenges. Following the Vibrio challenge, no significant effects of supplemented fatty acid diets on survival rate were observed, although dietary oleic acid demonstrated the highest 63.3% survival rate compared to only 43.3% of the control diet group. In addition, there were no significant effects (p > 0.05) on specific growth rate (SGR), white blood cell (WBC), and red blood cell (RBC) counts among all experimental diets. The results from this study suggest that among the tested dietary fatty acids, the oleic acid diet showed promising results in the form of elevated immune responses and increased disease resistance of the hybrid grouper fingerlings challenged with V. vulnificus.

3.
3 Biotech ; 12(9): 206, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35935547

ABSTRACT

Epinephelus fuscoguttatus is economically crucial to various Southeast Asia countries where they are reared in fish farms to meet the demand for supply. However, a systemic infectious disease known as vibriosis has steadily and extensively affected the fish farming industry. The disease is caused by Vibrio spp., which are pathogenic gram-negative bacteria. This study focused on understanding the host's metabolic adaptation against Vibrio vulnificus infection, which features a survival phenotype, by profiling the metabolites in grouper fingerlings that survived the experimental infection. Mapping of the pathways is crucial to explain the roles of metabolites in fish immunity. A solvent extraction method was used on the grouper's immune organs (gills, liver and spleen) prior to Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (LC-qTOF-MS) analysis. The metabolites identified in fingerlings that survived experimental infections were mostly amino acids (primary metabolites). Glutamine (0.44%), alanine (0.68%), phenylalanine (2.63%) and tyrosine (2.60%) were highly abundant in survived-infected gills. Aspartic acid (13.57%) and leucine (4.01%) were highly abundant in the livers of the survived-infected fish and lysine was highly abundant in both gills (2.94%) and liver (3.64%) of the survived-infected fish. Subsequent bioinformatics analysis revealed the involvement of the identified functional amino acids in various immune-related pathways. The current findings facilitate the comprehension of the metabolic adaptation of grouper fingerlings that exhibited a survival phenotype against Vibrio infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03269-1.

4.
Biology (Basel) ; 10(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34827079

ABSTRACT

Aquaculture is an important industry globally as it remains one of the significant alternatives of animal protein source supplies for humankind. Yet, the progression of this industry is being dampened by the increasing rate of fish mortality, mainly the outbreak of infectious diseases. Consequently, the regress in aquaculture ultimately results in the economy of multiple countries being affected due to the decline of product yields and marketability. By 2025, aquaculture is expected to contribute approximately 57% of fish consumption worldwide. Without a strategic approach to curb infectious diseases, the increasing demands of the aquaculture industry may not be sustainable and hence contributing to the over-fishing of wild fish. Recently, a new holistic approach that utilizes multi-omics platforms including transcriptomics, proteomics, and metabolomics is unraveling the intricate molecular mechanisms of host-pathogen interaction. This approach aims to provide a better understanding of how to improve the resistance of host species. However, no comprehensive review has been published on multi-omics strategies in deciphering fish disease etiology and molecular regulation. Most publications have only covered particular omics and no constructive reviews on various omics findings across fish species, particularly on their immune systems, have been described elsewhere. Our previous publication reviewed the integration of omics application for understanding the mechanism of fish immune response due to microbial infection. Hence, this review provides a thorough compilation of current advancements in omics strategies for fish disease management in the aquaculture industry. The discovery of biomarkers in various fish diseases and their potential advancement to complement the recent progress in combatting fish disease is also discussed in this review.

5.
3 Biotech ; 10(12): 544, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33240745

ABSTRACT

Mass mortality resulting from bacterial infection poses a major problem in the grouper aquaculture industry. The purpose of this study was to profile the metabolites released in challenged fish and to reconstruct the metabolic pathways of brown marble grouper (Epinephelus fuscoguttatus) in response to Vibrio vulnificus infection. Metabolite profiles from control and challenged treatment groups after feeding were determined using gas chromatography-mass spectrometry (GC-MS). Forty metabolites were identified from the GC-MS analysis. These metabolites comprised of amino acids, fatty acids, organic acids and carbohydrates. The profiles showed the highest percent area (33.1%) for leucine from the amino acid class in infected fish compared to the control treatment group (12.3%). Regarding the fatty acid class, a higher percent area of the metabolite 8,11-eicosadienoic acid (27.04%) was observed in fish infected with V. vulnificus than in the control treatment group (22.5%). Meanwhile, in the carbohydrate class, glucose (47.0%) was the metabolite in the carbohydrate class present at highest percentage in the control treatment group compared to infected fish (30.0%). Our findings highlight the importance of a metabolic analysis for understanding the changes of metabolites in E. fuscoguttatus in response to bacterial infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...