Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 221(1): 95-101, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17442358

ABSTRACT

The effects on the hypothalamus-pituitary-testicular axis of the well-known antispermatogenic drug lonidamine (LND) has not been elucidated so far. In the present study, the possible changes of the testicular steroid hormones were evaluated in immature mice for a better characterization of the LND adverse effects both in its use as antitumoral agent and male contraceptive. Male CD1 mice were orally treated on postnatal day 28 (PND28) with LND single doses (0 or 100 mg/kg b.w.) and euthanized every 24 h from PND29 to PND32, on PND35 and on PND42 (1 and 2 weeks after the administration, respectively). Severe testicular effects were evidenced in the LND treated groups, including: a) significant testis weight increase, 24 h and 48 h after dosing; b) sperm head counts decrease (more than 50% of the control) on PND29-32; c) damage of the tubule morphology primarily on the Sertoli cell structure and germ cell exfoliation. All these reproductive endpoints were recovered on PND42. At the same time, a significant impairment of the testicular steroid balance was observed in the treated mice, as evidenced by the decrease of testosterone (T) and androstenedione (ADIONE) and the increase of 17OH-progesterone (17OH-P4) on the first days after dosing, while the testicular content of 17beta-estradiol (E2) was unchanged. The hormonal balance was not completely restored afterwards, as levels of T, ADIONE and 17OH-P4 tended to be higher in the treated mice than in the controls, on PND35 and PND42. These data showed for the first time that LND affects intratesticular steroids in experimental animals. However further data are needed both to elucidate the mechanism responsible for the impairment of these metabolic pathways and to understand if the androgens decrease observed after LND administration could be partially involved in the testicular damage.


Subject(s)
Indazoles/toxicity , Testicular Hormones/metabolism , Testis/drug effects , Age Factors , Androstenedione/metabolism , Animals , Antispermatogenic Agents/administration & dosage , Antispermatogenic Agents/toxicity , Enzyme-Linked Immunosorbent Assay , Estradiol/metabolism , Hydroxyprogesterones/metabolism , Indazoles/administration & dosage , Intubation, Gastrointestinal , Male , Mice , Microscopy, Polarization , Organ Size/drug effects , Seminiferous Tubules/drug effects , Seminiferous Tubules/pathology , Sertoli Cells/drug effects , Sertoli Cells/pathology , Sperm Count , Spermatogenesis/drug effects , Spermatozoa/drug effects , Spermatozoa/pathology , Testis/metabolism , Testis/pathology , Testosterone/metabolism , Time Factors
2.
Ann N Y Acad Sci ; 1074: 52-73, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17105903

ABSTRACT

Exposure to methylphenidate (MPH) during adolescence is the elective therapy for attention deficit/hyperactivity disorder (ADHD) children, but raises major concerns for public health, due to possibly persistent neurobehavioral changes. Rats (30- to 44-days old) were administered MPH (2 mg/kg, i.p once daily) or saline (SAL). At the end of the treatment we collected plasma, testicular, liver, and brain (striatum) samples. The testes and liver were used to evaluate conventional reproductive and metabolic endpoints. Testes of MPH-exposed rats weighed more and contained an increased quantity of sperm, whereas testicular levels of testosterone (TST) were markedly decreased. The MPH treatment exerted an inductive effect on enzymatic activity of TST hydroxylases, resulting in increased hepatic TST catabolism. These findings suggest that subchronic MPH exposure in adolescent rats could have a trophic action on testis growth and a negative impact on TST metabolism. We have analyzed striatal gene expression profiles as a consequence of MPH exposure during adolescence, using microarray technology. More than 700 genes were upregulated in the striatum of MPH-treated rats (foldchange >1.5). A first group of genes were apparently involved in migration of immature neural/glial cells and/or growth of novel axons. These genes include matrix proteases (ADAM-1, MMP14), their inhibitors (TIMP-2, TIMP-3), the hyaluronan-mediated motility receptor (RHAMM), and growth factors (transforming growth factor-beta3 [TGF-beta3] and fibroblast growth factor 14 [FGF14]). A second group of genes were suggestive of active axonal myelination. These genes mediate survival of immature cells after contact with newly produced axonal matrix (laminin B1, collagens, integrin alpha 6) and stabilization of myelinating glia-axon contacts (RAB13, contactins 3 and 4). A third group indicated the appearance and/or upregulation of mature processes. The latter included genes for: K+ channels (TASK-1, TASK-5), intercellular junctions (connexin30), neurotransmitter receptors (adrenergic alpha 1B, kainate 2, serotonin 7, GABA-A), as well as major proteins responsible for their transport and/or anchoring (Homer 1, MAGUK MPP3, Shank2). All these genes were possibly involved in synaptic plasticity, namely the formation, maturation, and stabilization of new neural connections within the striatum. MPH treatment seems to potentiate synaptic plasticity, which is an age-dependent developmental phenomenon that adolescent rats are very likely to show, compared to adults. Our observations suggest that adolescent MPH exposure causes only transient changes in reproductive and hormonal parameters, and a more enduring enhancement of neurobehavioral plasticity.


Subject(s)
Brain/metabolism , Corpus Striatum/metabolism , Dopamine Agents/pharmacology , Liver/metabolism , Methylphenidate/pharmacology , Testis/metabolism , Animals , Brain/drug effects , Cell Movement , Corpus Striatum/drug effects , Dendritic Cells/physiology , Dose-Response Relationship, Drug , Gene Expression , Gene Expression Profiling , Liver/physiology , Male , Models, Biological , Nerve Fibers, Myelinated/metabolism , Neurons/metabolism , Neurons/physiology , Rats , Signal Transduction , Testis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...