Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 112(1): 132-137, 2023 01.
Article in English | MEDLINE | ID: mdl-35605686

ABSTRACT

To develop and assess new dosage forms for the alternative to existing oral medication for peripheral neuropathy, a hydrogel film in the skin patch formation containing tramadol hydrochloride (TRA), a water-soluble drug used as an analgesic, was prepared and evaluated. A hydrogel film composed of 20%(w/w) hydroxypropyl methylcellulose (HPMC) irradiated with electron beams had high transparency and elasticity similar to commercially available wound dressings and soft tissues, suggesting that it is a suitable substrate for TRA. The inclusion of TRA was enabled by immersing the HPMC hydrogel film in TRA aqueous solution. The release and skin permeation of TRA from TRA-containing hydrogel films differed depending on the electron beam dose. Moreover, the analgesic effects in mice were confirmed in a dose-dependent manner. This study demonstrated the usefulness of a hydrogel film containing TRA as a new dosage form alternative to the existing oral medication for peripheral neuropathy.


Subject(s)
Neuralgia , Tramadol , Mice , Animals , Hypromellose Derivatives , Neuralgia/drug therapy , Water , Analgesics , Methylcellulose
2.
Chem Pharm Bull (Tokyo) ; 58(12): 1582-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21139258

ABSTRACT

To design a suitable periodontal disease formulation using basic fibroblast growth factor (bFGF), legally available thickeners were evaluated focusing on their viscosity, extrusive force from a syringe, flow property and inertness to bFGF. Thirteen candidate thickeners showed appropriate viscosity (about 1×104 mPa·s), and further evaluations were conducted on them. Flow property was evaluated by the tilting test tube method. As a result, most thickener solutions with the optimum viscosity showed appropriate flow time (about 100 s) and the flow time did not depend on thickener concentration, whereas the extrusive force from a syringe depended on thickener concentration despite the thickener type and grade. Thickener solutions of 2-3% showed ideal result (10-20 N) and thickener solutions prepared outside of the concentration range (2-3%) were found to show unsuitable extrusive force. Consequently, to obtain required properties for a dental drug formulation, thickener solutions needed to show adequate viscosity (about 1×104 mPa·s) at 2-3% thickener concentration. In addition, several types of cellulose derivatives showed inertness to the bFGF because of their structure, without strong ionic dissociable groups, and neutral pH. Overall, the present work demonstrates that some water-soluble cellulose derivatives, such as hydroxypropylcellulose (HPC) and hydroxyethylcellulose (HEC), were suggested to have required properties for a dental drug formulation including bFGF.


Subject(s)
Excipients/chemistry , Fibroblast Growth Factor 2/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Chemistry, Pharmaceutical , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/therapeutic use , Humans , Periodontal Diseases/drug therapy , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...