Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-25615207

ABSTRACT

We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure the average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.

2.
Article in English | MEDLINE | ID: mdl-24125372

ABSTRACT

We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,^{3}He)n, D(d,t)p, and ^{3}He(d,p)^{4}He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,^{3}He)n and ^{3}He(d,p)^{4}He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.

3.
Phys Rev Lett ; 111(8): 082502, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-24010431

ABSTRACT

The plasma astrophysical S factor for the 3He(d,p)4He fusion reaction was measured for the first time at temperatures of few keV, using the interaction of intense ultrafast laser pulses with molecular deuterium clusters mixed with 3He atoms. Different proportions of D2 and 3He or CD4 and 3He were mixed in the gas target in order to allow the measurement of the cross section for the 3He(d,p)4He reaction. The yield of 14.7 MeV protons from the 3He(d,p)4He reaction was measured in order to extract the astrophysical S factor at low energies. Our result is in agreement with other S factor parametrizations found in the literature.

4.
Phys Rev Lett ; 111(5): 055002, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23952411

ABSTRACT

Two different methods have been employed to determine the plasma temperature in a laser-cluster fusion experiment on the Texas Petawatt laser. In the first, the temperature was derived from time-of-flight data of deuterium ions ejected from exploding D(2) or CD(4) clusters. In the second, the temperature was measured from the ratio of the rates of two different nuclear fusion reactions occurring in the plasma at the same time: D(d,(3)He)n and (3)He(d,p)(4)He. The temperatures determined by these two methods agree well, which indicates that (i) the ion energy distribution is not significantly distorted when ions travel in the disassembling plasma; (ii) the kinetic energy of deuterium ions, especially the "hottest part" responsible for nuclear fusion, is well described by a near-Maxwellian distribution.

5.
Phys Rev Lett ; 108(17): 172701, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22680857

ABSTRACT

Clustering in low density nuclear matter has been investigated using the NIMROD multidetector at Texas A&M University. Thermal coalescence modes were employed to extract densities, ρ, and temperatures, T, for evolving systems formed in collisions of 47A MeV (40)Ar+(112)Sn, (124)Sn and (64)Zn+(112)Sn, (124)Sn. The yields of d, t, (3)He, and (4)He have been determined at ρ=0.002 to 0.03 nucleons/fm(3) and T=5 to 11 MeV. The experimentally derived equilibrium constants for α particle production are compared with those predicted by a number of astrophysical equations of state. The data provide important new constraints on the model calculations.

6.
Phys Rev Lett ; 108(6): 062702, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22401061

ABSTRACT

In-medium binding energies and Mott points for d, t, 3He and α clusters in low-density nuclear matter have been determined at specific combinations of temperature and density in low-density nuclear matter produced in collisions of 47A MeV 40Ar and 64Zn projectiles with 112Sn and 124Sn target nuclei. The experimentally derived values of the in-medium modified binding energies are in good agreement with recent theoretical predictions based upon the implementation of Pauli blocking effects in a quantum statistical approach.

7.
Phys Rev Lett ; 104(20): 202501, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20867023

ABSTRACT

The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.

8.
Phys Rev Lett ; 101(12): 122702, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18851368

ABSTRACT

At finite temperatures and low densities, nuclei may undergo a phase change similar to a classical liquid-gas phase transition. Temperature is the control parameter while density and pressure are the conjugate variables. In the nucleus the difference between the proton and neutron concentrations acts as an additional order parameter, for which the symmetry potential is the conjugate variable. We present experimental results which reveal the N/Z dependence of the phase transition and discuss possible implications of these observations in terms of the Landau free energy description of critical phenomena.

9.
Phys Rev Lett ; 101(4): 042001, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18764320

ABSTRACT

The first measurements of xF-dependent single-spin asymmetries of identified charged hadrons, pi+/-, K+/-, and protons, from transversely polarized proton-proton collisions at 62.4 GeV at RHIC are presented. Large asymmetries are seen in the pion and kaon channels. The asymmetries in inclusive pi+ production, AN(pi+), increase with xF from 0 to approximately 0.25 and AN(pi-) decrease from 0 to approximately -0.4. Observed asymmetries for K- unexpectedly show positive values similar to those for K+, increasing with xF, whereas proton asymmetries are consistent with zero over the measured kinematic range. Comparisons of the data with predictions of QCD-based models are presented.

10.
Phys Rev Lett ; 98(25): 252001, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17678015

ABSTRACT

We present particle spectra for charged hadrons pi(+/-), K(+/-), p, and p[over] from pp collisions at square root[s] = 200 GeV measured for the first time at forward rapidities (2.95 and 3.3). The kinematics of these measurements are skewed in a way that probes the small momentum fraction in one of the protons and large fractions in the other. Large proton to pion ratios are observed at values of transverse momentum that extend up to 4 GeV/c, where protons have momenta up to 35 GeV. Next-to-leading order perturbative QCD calculations describe the production of pions and kaons well at these rapidities, but fail to account for the large proton yields and small p[over]/p ratios.

11.
Phys Rev Lett ; 94(16): 162301, 2005 Apr 29.
Article in English | MEDLINE | ID: mdl-15904216

ABSTRACT

We have measured rapidity densities dN/dy of pi+/- and K+/- over a broad rapidity range (-0.1 < y < 3.5) for central Au + Au collisions at square root(sNN) = 200 GeV. These data have significant implications for the chemistry and dynamics of the dense system that is initially created in the collisions. The full phase-space yields are 1660 +/- 15 +/- 133 (pi+), 1683 +/- 16 +/- 135 (pi-), 286 +/- 5 +/- 23 (K+), and 242 +/- 4 +/- 19 (K-). The systematics of the strange to nonstrange meson ratios are found to track the variation of the baryochemical potential with rapidity and energy. Landau-Carruthers hydrodynamics is found to describe the bulk transport of the pions in the longitudinal direction.

12.
Phys Rev Lett ; 94(3): 032301, 2005 Jan 28.
Article in English | MEDLINE | ID: mdl-15698255

ABSTRACT

Charged-particle pseudorapidity densities are presented for the d + Au reaction at sqrt[s(NN)] = 200 GeV with -4.2 < or = eta < or = 4.2. The results, from the BRAHMS experiment at BNL Relativistic Heavy-Ion Collider, are shown for minimum-bias events and 0%-30%, 30%-60%, and 60%-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semiclassical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt[s(NN)] = 19.4 GeV.

13.
Phys Rev Lett ; 93(13): 132701, 2004 Sep 24.
Article in English | MEDLINE | ID: mdl-15524714

ABSTRACT

Breakup densities of hot 197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E(*)/A less, similar 2 MeV, followed by a gradual decrease to a near-constant value of rho/rho(0) approximately 0.3 for E(*)/A greater, similar 5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

14.
Phys Rev Lett ; 93(10): 102301, 2004 Sep 03.
Article in English | MEDLINE | ID: mdl-15447397

ABSTRACT

Transverse momentum spectra and rapidity densities, dN/dy, of protons, antiprotons, and net protons (p-p) from central (0%-5%) Au+Au collisions at square root of S(NN)=200 GeV were measured with the BRAHMS experiment within the rapidity range 0

15.
Phys Rev Lett ; 93(24): 242303, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15697798

ABSTRACT

We report on a study of the transverse momentum dependence of nuclear modification factors R(dAu) for charged hadrons produced in deuteron + gold collisions at sqrt[s(NN)]=200 GeV, as a function of collision centrality and of the pseudorapidity (eta=0, 1, 2.2, 3.2) of the produced hadrons. We find a significant and systematic decrease of R(dAu) with increasing rapidity. The midrapidity enhancement and the forward rapidity suppression are more pronounced in central collisions relative to peripheral collisions. These results are relevant to the study of the possible onset of gluon saturation at energies reached at BNL RHIC.

16.
Phys Rev Lett ; 91(7): 072305, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12935010

ABSTRACT

We present spectra of charged hadrons from Au+Au and d+Au collisions at sqrt[s(NN)]=200 GeV measured with the BRAHMS experiment at RHIC. The spectra for different collision centralities are compared to spectra from p+(-)p collisions at the same energy scaled by the number of binary collisions. The resulting ratios (nuclear modification factors) for central Au+Au collisions at eta=0 and eta=2.2 evidence a strong suppression in the high p(T) region (>2 GeV/c). In contrast, the d+Au nuclear modification factor (at eta=0) exhibits an enhancement of the high p(T) yields. These measurements indicate a high energy loss of the high p(T) particles in the medium created in the central Au+Au collisions. The lack of suppression in d+Au collisions makes it unlikely that initial state effects can explain the suppression in the central Au+Au collisions.

17.
Phys Rev Lett ; 90(10): 102301, 2003 Mar 14.
Article in English | MEDLINE | ID: mdl-12688991

ABSTRACT

We present ratios of the numbers of charged antihadrons to hadrons (pions, kaons, and protons) in Au+Au collisions at sqrt[s(NN)]=200 GeV as a function of rapidity in the range y=0-3. While the ratios at midrapidity are approaching unity, the K(-)/K(+) and p;/p ratios decrease significantly at forward rapidities. An interpretation of the results within the statistical model indicates a reduction of the baryon chemical potential from mu(B) approximately 130 MeV at y=3 to mu(B) approximately 25 MeV at y=0.

18.
Phys Rev Lett ; 89(21): 212701, 2002 Nov 18.
Article in English | MEDLINE | ID: mdl-12443405

ABSTRACT

From experimental observations of limiting temperatures in heavy ion collisions we derive the critical temperature of infinite nuclear matter Tc=16.6+/-0.86. Theoretical model correlations between Tc, the compressibility modulus K, the effective mass m*, and the saturation density rho s are then exploited to derive the quantity (K/m*)1/2 rho -1/3 s. This quantity together with calculations employing Skyrme and Gogny interactions indicates a value of K in moderately excited nuclei that is in excellent agreement with the value determined from giant monopole resonance data.

19.
Phys Rev Lett ; 88(20): 202301, 2002 May 20.
Article in English | MEDLINE | ID: mdl-12005556

ABSTRACT

We present charged-particle multiplicities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at square root[s(NN)] = 200 GeV. For the 5% most central events we obtain dN(ch)/deta/(eta = 0) = 625+/-55 and N(ch)/(-4.7< or =eta < or =4.7) = 4630 +/- 370, i.e., 14% and 21% increases, respectively, relative to square root[s(NN)] = 130 GeV collisions. Charged-particle production per pair of participant nucleons is found to increase from peripheral to central collisions around midrapidity. These results constrain current models of particle production at the highest RHIC energy.

20.
Phys Rev Lett ; 87(11): 112305, 2001 Sep 10.
Article in English | MEDLINE | ID: mdl-11531519

ABSTRACT

Measurements, with the BRAHMS detector, of the antiproton-to-proton ratio at midrapidities and forward rapidities, are presented for Au+Au reactions at square root of [s(NN)] = 130 GeV, and for three different collision centralities. For collisions in the 0%-40% centrality range, we find N(&pmacr;)/N(p) = 0.64+/-0.04((stat))+/-0.06((syst)) at y approximately 0, 0.66+/-0.03+/-0.06 at y approximately 0.7, and 0.41+/-0.04+/-0.06 at y approximately 2. The ratios are found to be nearly independent of collision centrality and transverse momentum. The antiproton and proton rapidity densities vary differently with rapidity, and indicate a significant degree of collision transparency, although a net-baryon free midrapidity plateau (Bjorken limit) is not yet reached.

SELECTION OF CITATIONS
SEARCH DETAIL
...