Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(18): 6965-6978, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725516

ABSTRACT

The aqueous uranyl dication has long been known to facilitate the UV light-induced decomposition of aqueous VOCs (volatile organic compounds), via the long-lived highly efficient, uranyl excited state. The lower-energy visible light excited uranyl ion is also able to cleave unactivated hydrocarbon C-H bonds, yet the development of this reactivity into controlled and catalytic C-H bond functionalization is still in its infancy, with almost all studies still focused on uranyl nitrate as the precatalyst. Here, hydrocarbon-soluble uranyl nitrate and chloride complexes supported by substituted phenanthroline (Ph2phen) ligands are compared to each other, and to the parent salts, as photocatalysts for the functionalization of cyclooctane by H atom abstraction. Analysis of the absorption and emission spectra, and emission lifetimes of Ph2phen-coordinated uranyl complexes demonstrate the utility of the ligand in light absorption in the photocatalysis, which is related to the energy and kinetic decay profile of the uranyl photoexcited state. Density functional theory computational analysis of the C-H activation steps in the reaction show how a set of dispersion forces between the hydrocarbon substrate and the Ph2phen ligand provide control over the H atom abstraction, and provide predictions of selectivity of H atom abstraction by the uranyl oxo of the ring C-H over the ethyl C-H in an ethylcyclohexane substrate.

2.
Chemistry ; 30(7): e202303289, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37899311

ABSTRACT

Formamides are important feedstocks for the manufacture of many fine chemicals. State-of-the-art synthesis of formamides relies on the use of an excess amount of reagents, giving copious waste and thus poor atom-economy. Here, we report the first example of direct synthesis of N-formamides by coupling two challenging reactions, namely reductive amination of carbonyl compounds, particularly biomass-derived aldehydes and ketones, and fixation of CO2 in the presence of H2 over a metal-organic framework supported ruthenium catalyst, Ru/MFM-300(Cr). Highly selective production of N-formamides has been observed for a wide range of carbonyl compounds. Synchrotron X-ray powder diffraction reveals the presence of strong host-guest binding interactions via hydrogen bonding and parallel-displaced π⋅⋅⋅π interactions between the catalyst and adsorbed substrates facilitating the activation of substrates and promoting selectivity to formamides. The use of multifunctional porous catalysts to integrate CO2 utilisation in the synthesis of formamide products will have a significant impact in the sustainable synthesis of feedstock chemicals.

3.
Chem Commun (Camb) ; 60(1): 55-58, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38015470

ABSTRACT

The silsesquioxane ligand (iBu)7Si7O9(OH)3 (iBuPOSSH3) is revealed as an attractive system for the assembly of robust polynuclear complexes of uranium(III) and allowed the isolation of the first example of a trinuclear U(III) complex ([U3(iBuPOSS)3]) that exhibits magnetic communication and promotes dinitrogen reduction in the presence of reducing agent.

4.
RSC Adv ; 13(37): 26313-26322, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37671000

ABSTRACT

The ferrozine (FZ) assay is a vital oxidation state-specific colorimetric assay for the quantification of Fe2+ ions in environmental samples due to its sharp increase in absorbance at 562 nm upon addition of Fe2+. However, it has yet to be applied to corresponding fluoresence assays which typically offer higher sensitivites and lower detection limits. In this article we present for the first time its pairing with upconverting luminescent nanomaterials to enable detection of Fe2+via the inner filter effect using a low-power continuous wave diode laser (45 mW). Upon near infra-red excitation at 980 nm, the overlap of the upconversion emission of Er3+ at approximately 545 nm and the absorbance of the FZ:Fe2+ complex at 562 nm enabled measurement in the change of UCNP emission response as a function of Fe2+ concentration in a ratiometric manner. We first applied large, ultra-bright poly(acrylic acid) (PAA)-capped Gd2O2S:Yb3+,Er3+ UCNPs upconverting nanoparticles (UCNPs) for the detection of Fe2+ using FZ as the acceptor. The probe displayed good selectivity and sensitivity for Fe2+, with a low limit of detection (LoD) of 2.74 µM. Analogous results employing smaller (31 nm) PAA-capped hexagonal-phase NaYF4:Yb3+,Er3+ UCNPs synthesised in our lab were achieved, with a lower LoD towards Fe2+ of 1.43 µM. These results illustrate how the ratiometric nature of the system means it is applicable over a range of particle sizes, brightnesses and nanoparticle host matrices. Preliminary investigations also found the probes capable of detecting micromolar concentrations of Fe2+ in turbid solutions.

5.
Chemistry ; 29(71): e202302497, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37733973

ABSTRACT

Multinuclear, self-assembled lanthanide complexes present clear opportunities as sensors and imaging agents. Despite the widely acknowledged potential of this class of supramolecule, synthetic and characterization challenges continue to limit systematic studies into their self-assembly restricting the number and variety of lanthanide architectures reported relative to their transition metal counterparts. Here we present the first study evaluating the effect of ligand backbone symmetry on multinuclear lanthanide complex self-assembly. Replacement of a symmetric ethylene linker with an unsymmetric amide at the center of a homoditopic ligand governs formation of an unusual Ln6 L6 complex with coordinatively unsaturated metal centers. The choice of triflate as a counterion, and the effect of ionic radii are shown to be critical for formation of the Ln6 L6 complex. The atypical Ln6 L6 architecture is characterized using a combination of mass spectrometry, luminescence, DOSY NMR and EPR spectroscopy measurements. Luminescence experiments support clear differences between comparable Eu6 L6 and Eu2 L3 complexes, with relatively short luminescent lifetimes and low quantum yields observed for the Eu6 L6 structure indicative of non-radiative decay processes. Synthesis of the Gd6 L6 analogue allows three distinct Gd⋯Gd distance measurements to be extracted using homo-RIDME EPR experiments.

6.
J Am Chem Soc ; 145(35): 19225-19231, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37606549

ABSTRACT

Proton-exchange membrane fuel cells enable the portable utilization of hydrogen (H2) as an energy resource. Current electrolytic materials have limitation, and there is an urgent need to develop new materials showing especially high proton conductivity. Here, we report the ultra-fast proton conduction in a novel metal-organic framework, MFM-808, which adopts an unprecedented topology and a unique structure consisting of two-dimensional layers of {Zr6}-clusters. By replacing the bridging formate with sulfate ligands within {Zr6}-layers, the modified MFM-808-SO4 exhibits an exceptional proton conductivity of 0.21 S·cm-1 at 85 °C and 99% relative humidity. Modeling by molecular dynamics confirms that proton transfer is promoted by an efficient two-dimensional conducting network assembled by sulfate-{Zr6}-layers. MFM-808-SO4 also possesses excellent photocatalytic activity for water splitting to produce H2, paving a new pathway to achieve a renewable hydrogen-energy cycle.

7.
Front Chem ; 11: 1232690, 2023.
Article in English | MEDLINE | ID: mdl-37583568

ABSTRACT

Macrocyclic lanthanide complexes have become widely developed due to their distinctive luminescence characteristics and wide range of applications in biological imaging. However, systems with sufficient brightness and metal selectivity can be difficult to produce on a molecular scale. Presented herein is the stepwise introduction of differing lanthanide ions in a bis-DO3A/DTPA scaffold to afford three trinuclear bimetallic [Ln2Ln'] lanthanide complexes with site-specific, controlled binding [(Yb2Tb), (Eu2Tb), (Yb2Eu)]. The complexes display simultaneous emission from all LnIII centers across the visible (TbIII, EuIII) and near infra-red (YbIII) spectrum when excited via phenyl ligand sensitization at a wide range of temperatures and are consequently of interest for exploiting imaging in the near infra-red II biological window. Analysis of lifetime data over a range of excitation regimes reveals intermetallic communication between TbIII and EuIII centers and further develops the understanding of multimetallic lanthanide complexes.

8.
Mater Adv ; 4(8): 1941-1948, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37113466

ABSTRACT

Electrochemcial reduction of CO2 to multi-carbon (C2+) products is an important but challenging task. Here, we report the control of structural evolution of two porous Cu(ii)-based materials (HKUST-1 and CuMOP, MOP = metal-organic polyhedra) under electrochemical conditions by adsorption of 7,7,8,8-tetracyanoquinodimethane (TNCQ) as an additional electron acceptor. The formation of Cu(i) and Cu(0) species during the structural evolution has been confirmed and analysed by powder X-ray diffraction, and by EPR, Raman, XPS, IR and UV-vis spectroscopies. An electrode decorated with evolved TCNQ@CuMOP shows a selectivity of 68% for C2+ products with a total current density of 268 mA cm-2 and faradaic efficiency of 37% for electrochemcial reduction of CO2 in 1 M aqueous KOH electrolyte at -2.27 V vs. RHE (reversible hydrogen electrode). In situ electron paramagnetic resonance spectroscopy reveals the presence of carbon-centred radicals as key reaction intermediates. This study demonstrates the positive impact of additional electron acceptors on the structural evolution of Cu(ii)-based porous materials to promote the electroreduction of CO2 to C2+ products.

9.
J Magn Reson ; 351: 107447, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119743

ABSTRACT

Half-Integer High Spin (HIHS) systems with zero-field splitting (ZFS) parameters below 1 GHz are generally dominated by the spin |─1/2>→|+1/2 > central transition (CT). Accordingly, most pulsed Electron Paramagnetic Resonance (EPR) experiments are performed at this position for maximum sensitivity. However, in certain cases it can be desirable to detect higher spin transitions away from the CT in such systems. Here, we describe the use of frequency swept Wideband, Uniform Rate, Smooth Truncation (WURST) pulses for transferring spin population from the CT, and other transitions, of Gd(III) to the neighbouring higher spin transition |─3/2>→|─1/2 > at Q- and W-band frequencies. Specifically, we demonstrate this approach to enhance the sensitivity of 1H Mims Electron-Nuclear Double Resonance (ENDOR) measurements on two model Gd(III) aryl substituted 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) complexes, focusing on transitions other than the CT. We show that an enhancement factor greater than 2 is obtained for both complexes at Q- and W-band frequencies by the application of two polarising pulses prior to the ENDOR sequence. This is in agreement with simulations of the spin dynamics of the system during WURST pulse excitation. The technique demonstrated here should allow more sensitive experiments to be measured away from the CT at higher operating temperatures, and be combined with any relevant pulse sequence.

10.
Angew Chem Int Ed Engl ; 61(45): e202207947, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36222278

ABSTRACT

Dipolar coupled multi-spin systems have the potential to be used as molecular qubits. Herein we report the synthesis of a molecular multi-qubit model system with three individually addressable, weakly interacting, spin 1 / 2 ${{ 1/2 }}$ centres of differing g-values. We use pulsed Electron Paramagnetic Resonance (EPR) techniques to characterise and separately address the individual electron spin qubits; CuII , Cr7 Ni ring and a nitroxide, to determine the strength of the inter-qubit dipolar interaction. Orientation selective Relaxation-Induced Dipolar Modulation Enhancement (os-RIDME) detecting across the CuII spectrum revealed a strongly correlated CuII -Cr7 Ni ring relationship; detecting on the nitroxide resonance measured both the nitroxide and CuII or nitroxide and Cr7 Ni ring correlations, with switchability of the interaction based on differing relaxation dynamics, indicating a handle for implementing EPR-based quantum information processing (QIP) algorithms.


Subject(s)
Electrons , Electron Spin Resonance Spectroscopy/methods , Models, Molecular , Molecular Conformation
11.
J Mater Chem A Mater ; 10(34): 17801-17807, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36132069

ABSTRACT

Understanding the structural and chemical changes that reactive metal-organic frameworks (MOFs) undergo is crucial for the development of new efficient catalysts for electrochemical reduction of CO2. Here, we describe three Bi(iii) materials, MFM-220, MFM-221 and MFM-222, which are constructed from the same ligand (biphenyl-3,3',5,5'-tetracarboxylic acid) but which show distinct porosity with solvent-accessible voids of 49.6%, 33.6% and 0%, respectively. We report the first study of the impact of porosity of MOFs on their evolution as electrocatalysts. A Faradaic efficiency of 90.4% at -1.1 V vs. RHE (reversible hydrogen electrode) is observed for formate production over an electrode decorated with MFM-220-p, formed from MFM-220 on application of an external potential in the presence of 0.1 M KHCO3 electrolyte. In situ electron paramagnetic resonance spectroscopy confirms the presence of ·COOH radicals as a reaction intermediate, with an observed stable and consistent Faradaic efficiency and current density for production of formate by electrolysis over 5 h. This study emphasises the significant role of porosity of MOFs as they react and evolve during electroreduction of CO2 to generate value-added chemicals.

13.
Langmuir ; 38(8): 2576-2589, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35166554

ABSTRACT

In the United Kingdom, decommissioning of legacy spent fuel storage facilities involves the retrieval of radioactive sludges that have formed as a result of corrosion of Magnox nuclear fuel. Retrieval of sludges may re-suspend a colloidal fraction of the sludge, thereby potentially enhancing the mobility of radionuclides including uranium. The colloidal properties of the layered double hydroxide (LDH) phase hydrotalcite, a key product of Magnox fuel corrosion, and its interactions with U(VI) are of interest. This is because colloidal hydrotalcite is a potential transport vector for U(VI) under the neutral-to-alkaline conditions characteristic of the legacy storage facilities and other nuclear decommissioning scenarios. Here, a multi-technique approach was used to investigate the colloidal stability of hydrotalcite and the U(VI) sorption mechanism(s) across pH 7-11.5 and with variable U(VI) surface loadings (0.01-1 wt %). Overall, hydrotalcite was found to form stable colloidal suspensions between pH 7 and 11.5, with some evidence for Mg2+ leaching from hydrotalcite colloids at pH ≤ 9. For systems with U present, >98% of U(VI) was removed from the solution in the presence of hydrotalcite, regardless of pH and U loading, although the sorption mode was affected by both pH and U concentrations. Under alkaline conditions, U(VI) surface precipitates formed on the colloidal hydrotalcite nanoparticle surface. Under more circumneutral conditions, Mg2+ leaching from hydrotalcite and more facile exchange of interlayer carbonate with the surrounding solution led to the formation of uranyl carbonate species (e.g., Mg(UO2(CO3)3)2-(aq)). Both X-ray absorption spectroscopy (XAS) and luminescence analysis confirmed that these negatively charged species sorbed as both outer- and inner-sphere tertiary complexes on the hydrotalcite surface. These results demonstrate that hydrotalcite can form pseudo-colloids with U(VI) under a wide range of pH conditions and have clear implications for understanding the uranium behavior in environments where hydrotalcite and other LDHs may be present.

14.
ACS Earth Space Chem ; 5(11): 3075-3086, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34825123

ABSTRACT

Globally, the need for radioactive waste disposal and contaminated land management is clear. Here, gaining an improved understanding of how biogeochemical processes, such as Fe(III) and sulfate reduction, may control the environmental mobility of radionuclides is important. Uranium (U), typically the most abundant radionuclide by mass in radioactive wastes and contaminated land scenarios, may have its environmental mobility impacted by biogeochemical processes within the subsurface. This study investigated the fate of U(VI) in an alkaline (pH ∼9.6) sulfate-reducing enrichment culture obtained from a high-pH environment. To explore the mobility of U(VI) under alkaline conditions where iron minerals are ubiquitous, a range of conditions were tested, including high (30 mM) and low (1 mM) carbonate concentrations and the presence and absence of Fe(III). At high carbonate concentrations, the pH was buffered to approximately pH 9.6, which delayed the onset of sulfate reduction and meant that the reduction of U(VI)(aq) to poorly soluble U(IV)(s) was slowed. Low carbonate conditions allowed microbial sulfate reduction to proceed and caused the pH to fall to ∼7.5. This drop in pH was likely due to the presence of volatile fatty acids from the microbial respiration of gluconate. Here, aqueous sulfide accumulated and U was removed from solution as a mixture of U(IV) and U(VI) phosphate species. In addition, sulfate-reducing bacteria, such as Desulfosporosinus species, were enriched during development of sulfate-reducing conditions. Results highlight the impact of carbonate concentrations on U speciation and solubility in alkaline conditions, informing intermediate-level radioactive waste disposal and radioactively contaminated land management.

15.
Magn Reson Chem ; 59(12): 1244-1252, 2021 12.
Article in English | MEDLINE | ID: mdl-34405451

ABSTRACT

Pure shift nuclear magnetic resonance (NMR) methods suppress the effect of homonuclear scalar couplings to produce NMR spectra consisting solely of a single signal for each chemically distinct site. They are increasingly relied upon for analysis of complex molecules and mixtures as they overcome the extensive signal overlap that complicates proton NMR spectra of all but the simplest species. Current broadband pure shift methodologies for 1D proton spectra suffer from reduced sensitivity compared with their conventional counterparts and typically require a large amount of instrument time for low concentration samples. In this study, we demonstrate how the sensitivity limitation may be overcome by transiently increasing the bulk polarization using signal amplification by reversible exchange (SABRE) hyperpolarization. We utilize para-enriched dihydrogen to enhance the pure shift NMR resonances of pyridine by up to a factor of 60 in a single-scan experiment and extend this to propose a method to unambiguously determine mixture components based on the enhancement of their pure shift NMR signals.


Subject(s)
Hydrogen , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Protons
16.
J Am Chem Soc ; 143(33): 13184-13194, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34387466

ABSTRACT

Pentavalent uranyl species are crucial intermediates in transformations that play a key role for the nuclear industry and have recently been demonstrated to persist in reducing biotic and abiotic aqueous environments. However, due to the inherent instability of pentavalent uranyl, little is known about its electronic structure. Herein, we report the synthesis and characterization of a series of monomeric and dimeric, pentavalent uranyl amide complexes. These synthetic efforts enable the acquisition of emission spectra of well-defined pentavalent uranyl complexes using photoluminescence techniques, which establish a unique signature to characterize its electronic structure and, potentially, its role in biological and engineered environments via emission spectroscopy.

17.
Nature ; 598(7879): 72-75, 2021 10.
Article in English | MEDLINE | ID: mdl-34425584

ABSTRACT

Metal-metal bonding is a widely studied area of chemistry1-3, and has become a mature field spanning numerous d transition metal and main group complexes4-7. By contrast, actinide-actinide bonding, which is predicted to be weak8, is currently restricted to spectroscopically detected gas-phase U2 and Th2 (refs. 9,10), U2H2 and U2H4 in frozen matrices at 6-7 K (refs. 11,12), or fullerene-encapsulated U2 (ref. 13). Furthermore, attempts to prepare thorium-thorium bonds in frozen matrices have produced only ThHn (n = 1-4)14. Thus, there are no isolable actinide-actinide bonds under normal conditions. Computational investigations have explored the probable nature of actinide-actinide bonding15, concentrating on localized σ-, π-, and δ-bonding models paralleling d transition metal analogues, but predictions in relativistic regimes are challenging and have remained experimentally unverified. Here, we report thorium-thorium bonding in a crystalline cluster, prepared and isolated under normal experimental conditions. The cluster exhibits a diamagnetic, closed-shell singlet ground state with a valence-delocalized three-centre-two-electron σ-aromatic bond16,17 that is counter to the focus of previous theoretical predictions. The experimental discovery of actinide σ-aromatic bonding adds to main group and d transition metal analogues, extending delocalized σ-aromatic bonding to the heaviest elements in the periodic table and to principal quantum number six, and constitutes a new approach to elaborate actinide-actinide bonding.

18.
Nat Chem ; 13(7): 715, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34103694
19.
Nat Chem ; 13(5): 393-395, 2021 05.
Article in English | MEDLINE | ID: mdl-33931754
20.
Methods Appl Fluoresc ; 8(4)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32698171

ABSTRACT

The use of organic based fluorophores has been firmly established as a key tool in the biological sciences, with many biological-sensing methods taking advantage of Förster Resonance Energy Transfer (FRET) between different fluorescent organic based dyes following one photon excitation. Nevertheless, the employment of UV-visible absorbing dyes as fluorescent tags and markers typically suffer from several drawbacks including relatively high energy of excitation wavelength, photobleaching and competitive autofluorescence, which often limits their effectiveness and longevity bothin vitroandin vivo. As an alternative, lanthanide doped upconverting phosphors (UCP) have emerged as a new class of materials for use in optical imaging and RET sensing; they exhibit high photo- and chemical stability and utilise near infrared excitation. Approaches to sensing a given analyte target employing upconverting phosphors can be achieved by engineering the UCP to operate analogously to fluorescent dyes via Luminescence Resonance Energy Transfer (LRET) and such systems are now becoming central to optically sensing low concentrations of biologically important species and performing distance measurements. Similarly to FRET, the LRET process is distance dependent and requires spectral overlap between the absorption of the acceptor luminophore and the emission of the donor moiety, yet essential measures of the relationship between spectral overlap and the degree of quenching have not yet been established. To address this, we have investigated the Stern-Volmer relationship for a set of six commonly functionalised organic dyes and seven biomolecules that contain key chromophoric co-factors with Gd2SO4:Yb:Er (PTIR545) and Gd2SO4:Yb:Tm (PTIR475) UCPs under low power nIR excitation, and found that for the organic dyes a linear relationship between spectral overlap and degree of quenching is observed. However, this linear relationship is observed to break down for all the biomolecules investigated.


Subject(s)
Lanthanoid Series Elements , Luminescence , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...